
ISSN 1937 - 1055

VOLUME 4, 2016

INTERNATIONAL JOURNAL OF

MATHEMATICAL COMBINATORICS

EDITED BY

THE MADIS OF CHINESE ACADEMY OF SCIENCES AND

ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS, USA

DECEMBER, 2016



Vol.4, 2016 ISSN 1937-1055

International Journal of

Mathematical Combinatorics

Edited By

The Madis of Chinese Academy of Sciences and

Academy of Mathematical Combinatorics & Applications, USA

December, 2016



Aims and Scope: The International J.Mathematical Combinatorics (ISSN 1937-1055)

is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sci-

ences and published in USA quarterly comprising 110-160 pages approx. per volume, which

publishes original research papers and survey articles in all aspects of Smarandache multi-spaces,

Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology

and their applications to other sciences. Topics in detail to be covered are:

Smarandache multi-spaces with applications to other sciences, such as those of algebraic

multi-systems, multi-metric spaces,· · · , etc.. Smarandache geometries;

Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and

map enumeration; Combinatorial designs; Combinatorial enumeration;

Differential Geometry; Geometry on manifolds; Low Dimensional Topology; Differential

Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations

with Manifold Topology;

Applications of Smarandache multi-spaces to theoretical physics; Applications of Combi-

natorics to mathematics and theoretical physics; Mathematical theory on gravitational fields;

Mathematical theory on parallel universes; Other applications of Smarandache multi-space and

combinatorics.

Generally, papers on mathematics with its applications not including in above topics are

also welcome.

It is also available from the below international databases:

Serials Group/Editorial Department of EBSCO Publishing

10 Estes St. Ipswich, MA 01938-2106, USA

Tel.: (978) 356-6500, Ext. 2262 Fax: (978) 356-9371

http://www.ebsco.com/home/printsubs/priceproj.asp

and

Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning

27500 Drake Rd. Farmington Hills, MI 48331-3535, USA

Tel.: (248) 699-4253, ext. 1326; 1-800-347-GALE Fax: (248) 699-8075

http://www.gale.com

Indexing and Reviews: Mathematical Reviews (USA), Zentralblatt Math (Germany), Refer-

ativnyi Zhurnal (Russia), Mathematika (Russia), Directory of Open Access (DoAJ), Interna-

tional Statistical Institute (ISI), International Scientific Indexing (ISI, impact factor 1.659),

Institute for Scientific Information (PA, USA), Library of Congress Subject Headings (USA).

Subscription A subscription can be ordered by an email directly to

Linfan Mao

The Editor-in-Chief of International Journal of Mathematical Combinatorics

Chinese Academy of Mathematics and System Science

Beijing, 100190, P.R.China

Email: maolinfan@163.com

Price: US$48.00



Editorial Board (4th)

Editor-in-Chief

Linfan MAO

Chinese Academy of Mathematics and System

Science, P.R.China

and

Academy of Mathematical Combinatorics &

Applications, USA

Email: maolinfan@163.com

Deputy Editor-in-Chief

Guohua Song

Beijing University of Civil Engineering and

Architecture, P.R.China

Email: songguohua@bucea.edu.cn

Editors

Arindam Bhattacharyya

Jadavpur University, India

Email: bhattachar1968@yahoo.co.in

Said Broumi

Hassan II University Mohammedia

Hay El Baraka Ben M’sik Casablanca

B.P.7951 Morocco

Junliang Cai

Beijing Normal University, P.R.China

Email: caijunliang@bnu.edu.cn

Yanxun Chang

Beijing Jiaotong University, P.R.China

Email: yxchang@center.njtu.edu.cn

Jingan Cui

Beijing University of Civil Engineering and

Architecture, P.R.China

Email: cuijingan@bucea.edu.cn

Shaofei Du

Capital Normal University, P.R.China

Email: dushf@mail.cnu.edu.cn

Xiaodong Hu

Chinese Academy of Mathematics and System

Science, P.R.China

Email: xdhu@amss.ac.cn

Yuanqiu Huang

Hunan Normal University, P.R.China

Email: hyqq@public.cs.hn.cn

H.Iseri

Mansfield University, USA

Email: hiseri@mnsfld.edu

Xueliang Li

Nankai University, P.R.China

Email: lxl@nankai.edu.cn

Guodong Liu

Huizhou University

Email: lgd@hzu.edu.cn

W.B.Vasantha Kandasamy

Indian Institute of Technology, India

Email: vasantha@iitm.ac.in

Ion Patrascu

Fratii Buzesti National College

Craiova Romania

Han Ren

East China Normal University, P.R.China

Email: hren@math.ecnu.edu.cn

Ovidiu-Ilie Sandru

Politechnica University of Bucharest

Romania



ii International Journal of Mathematical Combinatorics

Mingyao Xu

Peking University, P.R.China

Email: xumy@math.pku.edu.cn

Guiying Yan

Chinese Academy of Mathematics and System

Science, P.R.China

Email: yanguiying@yahoo.com

Y. Zhang

Department of Computer Science

Georgia State University, Atlanta, USA

Famous Words:

The tragedy of the world is that those who are imaginative have but slight

experience, and those who are experienced have feeble imaginations.

By Alfred North Whitehead, a British philosopher and mathematician.



International J.Math. Combin. Vol.4(2016), 01-07

Isotropic Smarandache Curves in Complex Space C3
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Abstract: A regular curve in complex space, whose position vector is composed by Cartan

frame vectors on another regular curve, is called a isotropic Smarandache curve. In this

paper, I examine isotropic Smarandache curve according to Cartan frame in Complex 3-

space and give some differential geometric properties of Smarandache curves. We define

type-1 e1e3-isotropic Smarandache curves, type-2 e1e3-isotropic Smarandache curves and

e1e2e3-isotropic Smarandache curves in Complex space C3.
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§1. Introduction

It is observe that the imaginary curve in complex space were pioneered by E. Cartan. Cartan

defined his moving frame and his special equations in C3. In [6], the Cartan equations of

isotropic curve is extended to space C4. Moreover U. Pekmen [2] wrote some characterizations

of minimal curves by means of E. Cartan equations in C3.

A regular curve in Euclidean 3-space, whose position vector is composed by Frenet frame

vectors on another regular curve, is called Smarandache curve. M. Turgut and S. Yilmaz have

defined a special case of such curves and call it Smarandache TB2 curves in the space E4
1 [7].

A.T. Ali has introduced some special Smarandache curves in the Euclidean space [9]. Moreover,

special Smarandache curves have been investigated by using Bishop frame in Euclidean space

[10]. Special Smarandache curves according to Sabban frame have been studied by [11]. Besides

some special Smarandache curves have been obtained in E3
1 by [12]. Apart from M. Turgut

defined Smarandache breadth curves [8].

It is given that complex elements and complex curves to real space R3 which are mentioned

by Ferruh Semin, see [1]. In complex space C3 helices are characterized in [5]. In complex space

C4, S. Yilmaz characterized the isotropic curves with constant pseudo curvature which is called

the slant isotropic helix. Yılmaz and Turgut give some characterization of isotropic helices in

C3 [3].

Several authors introduce different types of helices and investigated their properties. For

instance, Barros et. al. studied general helices in 3- dimensional Lorentzian space. Izumiya and

1Received January 6, 2016, Accepted November 2, 2016.
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Takeuchi defined slant helices by the property that principal normal mekes a constant angle

with a fixed direction [14]. Kula and Yayli studied spherical images of tangent and binormal

indicatrices of slant helices and they have shown that spherical images are spherical helix [15].

Ali and Lopez gave some characterization of slant helices in Minkowski 3-space E3
1 [13].

In this work, using not common vector field know as Cartan frame, I introduce a new

Smarandache curves in C3. Also, Cartan apparatus of Smarandache curves have been formed

by Cartan apparatus of given curve α = α(s).

§2. Preliminaries

Let xp be a complex analytic function of a complex variable t. Then the vector function

−→x (t) =

4∑

p=1

xp(t)
−→
k p,

is called an imaginary curve, where −→x : C → C4,
−→
k p are standard basis unit vectors of E3 [6].

An isotropic curve x = x(s) in C3 is called an isotropic cubic if pseudo curvature of x(s)

is congruent to zero. A direction (b1, b2, b3) is a minimal direction if and only if

3∑

p=1

b2p = 0.

A vector which has a minimal direction is called an isotropic vector or minimal vector. A

vector
−→
ϑ is a minimal vector if and only if

−→
ϑ 2 = 0. Common points of a complex plane and

absolute are called siklik points of the plane. A plane which is tangent to the absolute is called

a minimal plane, see [6]. The curves, of which the square of the distance between the two points

equal to zero, are called minimal or isotropic curves [3]. Let s denote pseudo arc-length A curve

is an minimal (isotropic) curve if and only if ([4,5])

[−→x p(t)
]2

= 0 (2.2)

where d−→x
dt = −→x p(t) 6= 0. Let be each point −→x of the isotropic curve. E. Cartan frame is

defined (for well-known complex number i2 = −1) as follows, (see [1,4])

−→e 1 = −→x p

−→e 2 = i−→x pp

−→e 3 = −β
2
−→x p + −→x ppp

(2.3)

where β = (−→x ppp)2, equation (2.3) denote by {−→e 1,
−→e 2,

−→e 3} the moving E. Cartan frame along

the isotropic curve −→x in the space C3.
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The inner products of these frame vectors are given by

−→e i · −→e j =





0 if i+ j ≡ 1, 2, 3, (mod4)

1 if i+ j = 4




 (2.4)

The cross (vectoral) and fixed products of these frame vectors are given by

−→e j ∧ −→e k = i−→e j+k−2

< −→e 1,
−→e 2 ∧ −→e 3 >= i

(2.5)

for j, k = 1, 2, 3, s =
t∫

t0

−[−→x p(t)]
1
4 dt is a pseudo arc length, also invariant with respect to

parameter t. Thus the vector −→e 1 and −→e 3 are isotropic vector, −→e 2 is real vector E. Cartan

derivative formulas can be deduced from equation (2.3) as follows

−→e p

1 = i−→e 2

−→e p

2 = i(k−→e 1 + −→e 3)

−→e p

3 = ik−→e 2

(2.6)

where k = β
2 is called pseudo curvature of isotropic curve x = x(s). These equations can be

used if the minimal curve is at least of class C4. Here (p) denotes derivative according to pseudo

arc length s. In the rest of the paper, we will suppose pseudo curvature is non-vanishing expect

in the case of an isotropic cubic. Isotropic sphere with center −→m and radius r > 0 in C3 is

defined by

S2 =
{−→p = (p1, p2, p3) ∈ C3 : (−→p −−→m)2 = 0

}
.

§3. Type-1 eα
1 e

α
3−Isotropic Smarandache Curves

Definition 3.1 Let α = α(s) be a unit speed regular isotropic curve in C3 and {eα
1 , e

α
2 , e

α
3 } be

its moving Cartan frame. Type-1 eα
1 e

α
3 -isotropic Smarandache curves can be defined by

ϑ(s∗) =
1√
2
(eα

1 + eα
3 ). (3.1)

Now, we can investigate Cartan invariants of eα
1 e

α
3 -isotropic Smarandache curves according

to α = α(s). Differentiating equation (3.1) with respect to pseudo arc length s, we obtain

ϑp =
dϑ

ds∗
ds∗

ds
= − i√

2
(1 + kα)eα

2 (3.2)

where
ds∗

ds
=

(1 + kα)i√
2

. (3.3)
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The tangent isotropic vector of curve ϑ can be expressed as follow

eϑ
1 = −

√
1 + kαeα

2 (3.4)

Differentiating equation (3.4) with respect to pseudo arc length s, we obtain

(
eϑ
1

)p ds∗
ds

= 2(1 + kα)ieα
1 + (kα)

p
eα
2 + 2(1 + kα)ieα

3 . (3.5)

Substituting equation (3.3) into equation (3.5), we find

(
eϑ
1

)p
=
(
2
√

2kα
)
eα
1 −

(√
2 (kα)

p

1 + kα
i

)
eα
2 + 2

√
2eα

3 .

Since
(
eϑ
1

)p
= −ieϑ

2 , the principal vector field of curve ϑ

eϑ
2 =

(
2
√

2kα
)
eα
1 −

(√
2 (kα)p

1 + kα

)
ieα

2 + 2
√

2eα
3 . (3.6)

Using Cartan equation (2.6)3, we have

eϑ
3 = i

∫
kϑ

[
2
√

2kαeα
1 +

√
2 (kα)p

1 + kα
eα
2 + 2

√
2ieα

3

]
ds (3.7)

and

kϑ = −
(
eϑ
3

)p

eϑ
2

i. (3.8)

Substituting equations (3.6) and (3.7) into equation (3.8), we obtain

kϑ =

{
i

∫
kϑ

[
2
√

2kαeα
1 +

√
2 (kα)

p

1 + kα
eα
2 + 2

√
2ieα

3

]
ds

}p

2
√

2kαeα
1 +

√
2(kα)p

1+kα eα
2 + 2

√
2ieα

3

i. (3.9)

Proposition 3.1 If ϑ a isotropic Smarandache curves in C3, then kα = −1.

Proof Using equation (3.4) and definition isotropic curves, it is seen straightforwardly. 2
Proposition 3.2 Let α = α(s) be a unit speed regular isotropic curve in C3, If δ a isotropic

cubic in C3, then pseudo curvature of α satisfies eϑ
3 =constant and eϑ

2 6= 0.

Proof It is seen straightforwardly from definition isotrobic cubic. 2
§4. Type-2 eα

1 e
α
3−Isotropic Smarandache Curves

Definition 4.1 Let α = α(s) be a unit speed regular isotropic curve in C3 and {eα
1 , e

α
2 , e

α
3 } be
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its moving Cartan frame. Type-2 eα
1 e

α
3 -isotropic Smarandache curves can be defined by

δ(s∗) =
i√
2
(eα

1 − eα
3 ). (4.1)

Now, we can investigate Cartan invariants of type-2 eα
1 e

α
3 -isotropic Smarandache curves

according to α = α(s). Differentiating equation (4.1) with respect to pseudo arc length s, we

obtain

δp =
dδ

ds∗
ds∗

ds
= − 1√

2
(kα − 1)eα

2 (4.2)

and

eδ
1

ds∗

ds
= − 1√

2
(kα − 1)eα

2

where
ds∗

ds
=

√
kα − 1√

2
. (4.3)

The tangent isotropic vector of curve δ can be expressed as follow

eδ
1 = −

√
kα − 1eα

2 (4.4)

Differentiating equation (4.4) with respect to pseudo arc length s, we obtain

eδ
2 =

√
kα − 1kαeα

1 − i (kα)
p

2
√
kα − 1

eα
2 +

√
kα − 1eα

3 . (4.5)

Using definition, binormal vector field and pseudo curvature of isotropic Smarandache

curve δ are respectively,

eδ
3 = i

∫
kδ

[
√
kα − 1kαeα

1 − i (kα)
p

2
√
kα − 1

eα
2 +

√
kα − 1eα

3

]
ds (4.6)

and

kδ =

{
−i
∫
kδ

[
√
kα − 1kαeα

1 − i (kα)
p

2
√
kα − 1

eα
2 +

√
kα − 1eα

3

]
ds

}p

√
kα − 1kαeα

1 − i(kα)p

2
√

kα−1
eα
2 +

√
kα − 1eα

3

i. (4.7)

Proposition 4.1 If δ a isotropic Smarandache curves in C3, then kα = 1.

Proof Using equation (4.4) and definition isotropic curves, it is seen straightforwardly. 2
Proposition 4.2 Let α = α(s) be a unit speed regular isotropic curve in C3, If δ a isotropic

cubic in C3, then pseudo curvature of α satisfies eδ
3 =constant and eδ

2 6= 0.

Proof It is seen straightforwardly from definition isotrobic cubic. 2
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§5. eα
1 e

α
2 e

α
3−Isotropic Smarandache Curves

Definition 5.1 Let α = α(s) be a unit speed regular isotropic curve in C3 and {eα
1 , e

α
2 , e

α
3 } be

its moving Cartan frame. Type-1 eα
1 e

α
3 -isotropic Smarandache curves can be defined by

η(s∗) =
1√
3
(eα

1 + eα
2 + eα

3 ). (5.1)

Now, we can investigate Cartan invariants of eα
1 e

α
2 e

α
3 -isotropic Smarandache curves ac-

cording to α = α(s). Differentiating equation (5.1) with respect to pseudo arc length s, we

have

ηp =
dη

ds∗
ds∗

ds
=

1√
3

[ikαeα
1 − i(kα + 1)eα

2 + ieα
3 ] (5.2)

and

ηp = eη
1

ds∗

ds
=

1√
3

[ikαeα
1 − i(kα + 1)eα

2 + ieα
3 ]

where
ds∗

ds
=

√
1 + kα

√
3

. (5.3)

The tangent isotropic vector of curve η can be written as follow:

eη
1 =

1√
1 + kα

[ikαeα
1 − i(kα + 1)eα

2 + ieα
3 ] (5.4)

Differentiating equation (5.4) with respect to pseudo arc length s, we obtain

eη
2 =

{(
−
√

3
1+kα

)
[i (kα)

p
+ (kα + 1)k] −

(
−
√

3
1+kα

)p

ikα

}
eα
1

−
{( √

3
1+kα

)
[−2kα + (kα + 1)p] −

(
−
√

3
1+kα

)p

(kα + 1)

}
eα
2

−
{(

−
√

3
1+kα

)p

+
( √

3
1+kα

)}
eα
3

Using definition, binormal vector field and pseudo curvature of isotropic Smarandache

curve η are respectively

eη
3 = −i

∫
kη{






(
−
√

3

1 + kα

)
[(kα)

p
+ (kα + 1)kα] −

(
−
√

3

1 + kα

)p

ikα




 eα
1

−
{( √

3
1+kα

)
[2kα + (kα + 1)p] −

(
−
√

3
1+kα

)p

(kα + 1)

}
eα
2

−
{( √

3
1+kα

)p

+
( √

3
1+kα

)}
eα
3 }ds

Let eη
3 = H(s) and eη

2 = G(s) ın this case, we have

kη =
(H(s))

p

G(s)
. (5.5)
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Proposition 5.1 If η a isotropic Smarandache curves in C3, then kα 6= −1.

Proof Using equation (5.4) and definition isotropic curves, it is seen straightforwardly. 2
Proposition 5.2 Let α = α(s) be a unit speed regular isotropic curve in C3, If η a isotropic

cubic in C3, then pseudo curvature of α satisfies eη
3 =constant and eη

2 6= 0.

Proof It is seen straightforwardly from definition isotrobic cubic. 2
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Abstract: In this paper, 2-pseudo neighbourly irregular intuitionistic fuzzy graph, 2-

pseudo neighbourly totally irregular intuitionistic fuzzy graph are introduced and compared

through various examples. A necessary and sufficient condition under which they are equiv-

alent is provided. 2- pseudo neighbourly irregularity on some intuitionistic fuzzy graphs

whose underlying crisp graphs are a cycle Cn, a Bi-star graph Bn,m, Sub(Bn,m), and a path

Pn are studied.

Key Words: Degree of a vertex in an intuitionistic fuzzy graph, d2-degree of a vertex in an

intuitionistic fuzzy graph, total d2-degree, pseudo degree, pseudo total degree,neighbourly

irregular intuitionistic fuzzy graph.

AMS(2010): 05C12, 03E72, 05C72.

§1. Introduction

The first definition of fuzzy graph was introduced by Kaufmann [9] in 1975, based on Zadeh’s

fuzzy relations in 1965 ([17]). Atanassov [4] introduced the concept of intuitionistic fuzzy

(IF) relations and Intuitionistic Fuzzy Graphs (IFGs). Parvathi and Karunambigai [12] intro-

duced the concept of IFG elaborately and analyzed its components. S. Ravi Narayanan and

S. Murugesan [13] introduced Pseudo Regular Intuitionistic Fuzzy Graphs. A. Nagoor Gani,

R. Jahir Hussain and S. Yahya Mohamed [11] introduced Neighbourly Irregular Intuitionistic

Fuzzy Graphs. Articles [4, 11, 12, 13] motivated us to introduce 2- pseudo neighbourly irregular

intuitionistic fuzzy graph, 2- pseudo neighbourly totally irregular intuitionistic fuzzy graph and

analyze some of its properties.

In Section 2, we review some basic concepts and definitions. Section 3 deals with 2-pseudo

neighbourly irregular intuitionistic fuzzy graphs and 2-pseudo neighbourly totally irregular in-

tuitionistic fuzzy graphs. Comparative study between them is made and necessary and sufficient

condition is provided. Section 4 deals with 2-pseudo neighbourly irregularity on cycle with some

1Received May 26, 2016, Accepted November 4, 2016.



2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graphs 9

specific membership function. Section 5 deals with 2-pseudo neighbourly irregularity on bi-star

graph Bn,m with some specific membership function. Section 6 deals with 2-pseudo neighbourly

irregularity on subdivision of bi-star graph with some specific membership function. Section 7

deals with 2-pseudo neighbourly irregularity on a path with some specific membership function.

Throughout this paper, the vertices takes the membership value A = (µ1, γ1) and the edges

takes the membership values B = (µ2, γ2).

§2. Preliminaries

We present some known definitions related to fuzzy graphs and intuitionistic fuzzy graphs for

ready reference to go through the work presented in this paper.

Definition 2.1([6]) A fuzzy graph G : (σ, µ) is a pair of functions (σ, µ), where σ : V →[0,1]

is a fuzzy subset of a non empty set V and µ : V × V →[0, 1] is a symmetric fuzzy relation on

σ such that for all u, v in V , the relation µ(u, v) ≤ σ(u) ∧ σ(v) is satisfied. A fuzzy graph G is

called complete fuzzy graph if the relation µ(u, v) = σ(u) ∧ σ(v) is satisfied.

Definition 2.2([3]) An intuitionistic fuzzy graph with underlying set V is defined to be a pair

G = (V,E) where

(1) V = {v1, v2, v3, · · · , vn} such that µ1 : V → [0, 1] and γ1 : V → [0, 1] denote the

degree of membership and non-membership of the element vi ∈ V, i = 1, 2, 3, · · · , n, such that

0 ≤ µ1(vi) + γ1(vi) ≤ 1;

(2) E ⊆ V ×V , where µ2 : V ×V → [0, 1] and γ2 : V ×V → [0, 1] are such that µ2(vi, vj) ≤
min{µ1(vi), µ1(vj)} and γ2(vi, vj) ≤ max{γ1(vi), γ1(vj)} and 0 ≤ µ2(vi, vj) + γ2(vi, vj) ≤ 1 for

every (vi, vj) ∈ E, i, j = 1, 2, · · · , n.

Definition 2.3([8]) If vi, vj ∈ V ⊆ G, the µ-strength of connectedness between two vertices vi

and vj is defined as µ∞
2 (vi, vj) = sup{µk

2(vi, vj) : k = 1, 2, · · · , n} and γ-strength of connected-

ness between two vertices vi and vj is defined as γ∞2 (vi, vj) = inf{γk
2 (vi, vj) : k = 1, 2, · · · , n}.

If u and v are connected by means of paths of length k then µk
2(u, v) is defined as sup

{µ2(u, v1)∧µ2(v1, v2)∧ · · · ∧µ2(vk−1, v) : (u, v1, v2, · · · , vk−1, v) ∈ V } and γk
2 (u, v) is defined as

inf{γ2(u, v1) ∧ γ2(v1, v2) ∧ · · · ∧ γ2(vk−1, v) : (u, v1, v2, · · · , vk−1, v) ∈ V }.

Definition 2.4([8]) Let G : (A,B) be an intuitionistic fuzzy graph on G∗(V,E). Then the

degree of a vertex vi ∈ G is defined by d(vi) = (dµ1(vi), dγ1(vi)), where dµ1(vi) =
∑
µ2(vi, vj)

and dγ1(vi) =
∑
γ2(vi, vj), for (vi, vj) ∈ E and µ2(vi, vj) = 0 and γ2(vi, vj) = 0 for (vi, vj) /∈ E.

Definition 2.5([8]) Let G : (A,B) be an intuitionistic fuzzy graph on G∗(V,E). Then the

total degree of a vertex vi ∈ G is defined by td(vi) = (tdµ1 (vi), tdγ1(vi)), where tdµ1(vi) =

dµ1(vi) + µ1(vi) and tdγ1(vi) = dγ1(vi) + γ1(vi).

Definition 2.6([13]) Let G : (A,B) be an intuitionistic fuzzy graph. The membership pseudo

degree of a vertex u ∈ G is defined as d(a)µ1(u) =
tµ

di
where tµ is the sum of membership degrees

of vertices incident with vertex u. The non-membership pseudo degree of a vertex u ∈ G is
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defined as d(a)γ1(u) =
tγ

di
where tγ is the sum of non-membership degrees of vertices incident

with vertex u and di is the total number of edges incident with the vertex u. The pseudo degree

of a vertex u ∈ G is defined as d(a)(u) = (d(a)µ1(u), d(a)γ1(u)).

Definition 2.7([13]) Let G : (A,B) be an intuitionistic fuzzy graph. The pseudo total degree of

a vertex u ∈ G is defined as td(a)(u) = (td(a)µ1(u), td(a)γ1(u)) where td(a)µ1(u) = d(a)µ1(u) +

µ1(u) and td(a)γ1(u) = d(a)γ1(u) + γ1(u). It can also be defined as td(a)(u) = d(a)(u) +A(u).

Definition 2.8([13]) Let G : (A,B) be an intuitionistic fuzzy graph. The membership d2 -

pseudo degree of a vertex u ∈ G is defined as d(a)(2)µ1(u) =
∑

d(2)µ1
(u)

di
. The non-membership

d2-pseudo degree of a vertex u ∈ G is defined as d(a)(2)γ1(u) =
∑

d(2)γ1
(u)

di
where di is the

number of edges incident with the vertex u. The d2 - pseudo degree of a vertex u is defined as

d(a)(2)(u) = (d(a)(2)µ1(u), d(a)(2)γ1(u)).

Definition 2.9([13]) Let G : (A,B) be an intuitionistic fuzzy graph. Then the d2-pseudo

total degree of a vertex u ∈ V is defined as td(a)(2)(u) = (td(a)(2)µ1(u), td(a)(2)γ1(u)), where

td(a)(2)µ1(u) = d(a)(2)µ1(u) + µ1(u) and

td(a)(2)γ1(u) = d(a)(2)γ1(u) + γ1(u). Also it can be defined as td(a)(2)(u) = d(a)(2)(u) + A(u)

where A(u) = (µ1(u), γ1(u)).

Definition 2.10([11]) Let G : (A,B) be an intuitionistic fuzzy graph. Then G is said to

be neighbourly irregular intuitionistic fuzzy graph if every two adjacent vertices have distinct

degrees.

Definition 2.11([14]) Let G : (A,B) be an intuitionistic fuzzy graph. If d(a)(v) = (r1, r2) and

d(a)(2)(v) = (c1, c2), then G is said to be ((r1, r2), 2, (c1, c2))- pseudo regular intuitionistic fuzzy

graph.

§3. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graphs

In this section, 2-pseudo neighbourly irregular and 2-pseudo neighbourly totally irregular intu-

itionistic fuzzy graphs are defined. A necessary and sufficient condition under which they are

equivalent is provided.

Definition 3.1 Let G : (A,B) be a connected intuitionistic fuzzy graph. Then G is said to

be 2-pseudo neighbourly irregular intuitionistic fuzzy graph if every two adjacent vertices of G

have distinct d2-pseudo degrees.

Example 3.2 Consider an intuitionistic fuzzy graph on G∗ : (V,E).
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(0.1, 0.4)

(0.3, 0.5)

(0.4, 0.6)

(0.2, 0.3)

(0.2, 0.5)

(0.3, 0.3)

u(0.4, 0.5)

v(0.4, 0.6)

w(0.4, 0.6)x(0.4, 0.6)

y(0.4, 0.5)

Figure 1

Here, d(a)(2)(u) = (0.3, 0.55), d(a)(2)(v) = (0.33, 0.83), d(a)(2)(w) = (0.4, 0.8), d(a)(2)(x) =

(0.35, 0.75) and d(a)(2)(y) = (0.37, 0.87).

So, every two adjacent vertices have distinct d2-pseudo degrees. Hence G is 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

Definition 3.3 If every two adjacent vertices of an intuitionistic fuzzy graph G : (A,B) have

distinct d2 -pseudo total degrees, then G is said to be 2-pseudo neighbourly totally irregular

intuitionistic fuzzy graph.

Example 3.4 Consider an intuitionistic fuzzy graph on G∗ : (V,E).

u(0.3, 0.4) v(0.4, 0.4) w(0.5, 0.5)

z(0.4, 0.6) y(0.5, 0.5) x(0.3, 0.5)

(0.2, 0.3) (0.3, 0.4)

(0.3, 0.4) (0.2, 0.3)

(0.4, 0.5)

Figure 2

Here, td(a)(2)(u) = (0.8, 1.4), td(a)(2)(v) = (0.87, 1.13), td(a)(2)(w) = (1, 1.5), td(a)(2)(x) =

(0.8, 1.5), td(a)(2)(y) = (0.97, 1.43) and td(a)(2)(z) = (0.9, 1.6).

So, every two adjacent vertices have distinct d2-pseudo total degrees. Hence G is 2-pseudo

neighbourly totally irregular intuitionistic fuzzy graph.

Remark 3.5 A 2-pseudo neighbourly irregular intuitionistic fuzzy graph need not be a 2-pseudo

neighbourly totally irregular intuitionistic fuzzy graph.

Remark 3.6 A 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph need not be a

2-pseudo neighbourly irregular intuitionistic fuzzy graph.
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Proposition 3.7 If the membership value of the adjacent vertices are distinct, then ((r1, r2), 2, (c1, c2))-

pseudo regular intuitionistic fuzzy graph is 2-pseudo neighbourly totally irregular intuitionistic

fuzzy graph.

Proof The proof is obvious. 2
Theorem 3.8 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E). If G is a 2-

pseudo neighbourly irregular intuitionistic fuzzy graph and A is a constant function, then G is

a 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Proof Let G : (A,B) be a 2-pseudo neighbourly irregular intuitionistic fuzzy graph. Then

the d2- pseudo degree of every two adjacent vertices are distinct. Let u and v be two adjacent

vertices with distinct d2 -pseudo degrees. This implies that d(a)(2)(u) = (k1, k2) and d(a)(2)(v) =

(k3, k4), where k1 6= k3, k2 6= k4 and A(u) = A(v) = (c1, c2), a constant where c1, c2 ∈ [0, 1].

Suppose td(a)(2)(u) = td(a)(2)(v) ⇒ d(a)(2)(u) +A(u) = d(a)(2)(v) +A(v) ⇒ (k1, k2) + (c1, c2) =

(k3, k4) + (c1, c2) ⇒ (k1, k2) = (k3, k4), which is a contradiction. So, td(a)(2)(u) 6= td(a)(2)(v).

Hence any two adjacent vertices u and v with distinct d2- pseudo degrees have their d2- pseudo

total degrees distinct, provided A is a constant function. This is true for every pair of adjacent

vertices in G. Hence G is 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph. 2
Theorem 3.9 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E). If G is a 2-pseudo

neighbourly totally irregular intuitionistic fuzzy graph and A is a constant function, then G is

a 2-pseudo neighbourly irregular intuitionistic fuzzy graph.

Proof Let G : (A,B) be a 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Then the d2-pseudo total degree of every two adjacent vertices are distinct. Let u and v be two

adjacent vertices with d2 -pseudo degrees (k1, k2) and (k3, k4). Then d(a)(2)(u) = (k1, k2) and

d(a)(2)(v) = (k3, k4). Given that A(u) = A(v) = (c1, c2), a constant where c1, c2 ∈ [0, 1] and

td(a)(2)(u) 6= td(a)(2)(v). Since, td(a)(2)(u) 6= td(a)(2)(v) ⇒ d(a)(2)(u) + A(u) 6= d(a)(2)(v) + A(v)

⇒ (k1, k2) + (c1, c2) 6= (k3, k4) + (c1, c2) ⇒ (k1, k2) 6= (k3, k4) ⇒ d(a)(2)(u) 6= d(a)(2)(v). Hence

any two adjacent vertices u and v with distinct d2- pseudo total degrees have their d2- pseudo

degrees distinct, provided A is a constant function. This is true for every pair of adjacent

vertices in G. Hence G is 2-pseudo neighbourly irregular intuitionistic fuzzy graph. 2
Remark 3.10 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E). Theorems

3.8 and 3.9 jointly yield the following result. If A is a constant function, then G is a 2-pseudo

neighbourly totally irregular intuitionistic fuzzy graph if and only if G is a 2-pseudo neighbourly

irregular intuitionistic fuzzy graph.

Remark 3.11 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E). If G is both 2-

pseudo neighbourly irregular intuitionistic fuzzy graph and G is a 2-pseudo neighbourly totally

irregular intuitionistic fuzzy graph. Then A need not be a constant function.

§4. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on a Cycle with

Some Specific Membership Functions

In this section, Theorems 4.1 and 4.4 provide 2-pseudo neighbourly irregularity on intuitionistic
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fuzzy graph G : (A,B) on a cycle G∗ : (V,E).

Theorem 4.1 Let G : (A,B) be an intuitionistic fuzzy graph on a cycle G∗ : (V,E) of length n.

If the values of the edges e1, e2, e3, · · · , en are respectively (c1, k1), (c2, k2), (c3, k3), · · · , (cn, kn)

such that ci < ci+1 and ki > ki+1, for i = 1, 2, · · · , n − 1, then G is a 2-pseudo neighbourly

irregular intuitionistic fuzzy graph.

Proof Let G : (A,B) be an intuitionistic fuzzy graph on a cycle G∗ : (V,E) of length n.

Let e1, e2, e3, · · · , en be the edges of the cycle of G∗ in that order. Let the values of the edges

e1, e2, e3, · · · , en be (c1, k1), (c2, k2), (c3, k3), · · · , (cn, kn) such that ci < ci+1 and ki > ki+1 for

i = 1, 2, · · · , n− 1

d(2)µ1(v1) = {µ2(e1) ∧ µ2(e2)} + {µ2(en) ∧ µ2(en−1)}
= {c1 ∧ c2} + {cn ∧ cn−1}
= c1 + cn−1.

d(2)µ1(v2) = {µ2(e1) ∧ µ2(en)} + {µ2(e2) ∧ µ2(e3)}
= {c1 ∧ cn} + {c2 ∧ c3}
= c1 + c2.

For i = 3, 4, 5, · · · , n− 1,

d(2)µ1(vi) = {µ2(ei−1) ∧ µ2(ei−2)} + {µ2(ei+1) ∧ µ2(ei)}
= {ci−1 ∧ ci−2} + {ci ∧ ci+1}
= ci−2 + ci.

d(2)µ1(vn) = {µ2(e1) ∧ µ2(en)} + {µ2(en−1) ∧ µ2(en−2)}
= {c1 ∧ cn} + {cn−1 ∧ cn−2}
= c1 + cn−2.

d(2)γ1(v1) = {γ2(e1) ∨ γ2(e2)} + {γ2(en) ∨ γ2(en−1)}
= {k1 ∨ k2} + {kn ∨ kn−1}
= k1 + kn−1.

d(2)γ1(v2) = {γ2(e1) ∨ γ2(en)} + {γ2(e2) ∨ γ2(e3)}
= {k1 ∨ kn} + {k2 ∨ k3}
= k1 + k2.
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For i = 3, 4, 5, · · · , n− 1,

d(2)γ1(vi) = {γ2(ei−1) ∨ γ2(ei−2)} + {γ2(ei+1) ∨ γ2(ei)}
= {ki−1 ∨ ki−2} + {ki ∨ ki+1}
= ki−2 + ki.

d(2)γ1(vn) = {γ2(e1) ∨ γ2(en)} + {γ2(en−1) ∨ γ2(en−2)}
= {k1 ∧ kn} + {kn−1 ∧ kn−2}
= k1 + kn−2.

Every two adjacent vertices have distinct d2-pseudo degrees. Hence G is a 2- pseudo

neighbourly irregular intuitionistic fuzzy graph. 2
Remark 4.2 Even if the values of the edges e1, e2, e3, . . . , en are respectively (c1, k1), (c2, k2),

(c3, k3), · · · , (cn, kn) such that ci < ci+1 and ki > ki+1 for i = 1, 2, · · · , n− 1 then G need not

be 2- pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Theorem 4.3 Let G : (A,B) be an intuitionistic fuzzy graph on a cycle G∗ : (V,E) of length n.

If the values of the edges e1, e2, e3, · · · , en are respectively (c1, k1), (c2, k2), (c3, k3), · · · , (cn, kn)

such that ci > ci+1 and ki < ki+1, for i = 1, 2, · · · , n − 1, then G is a 2-pseudo neighbourly

irregular intuitionistic fuzzy graph.

Proof Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E) of length n. Let

e1, e2, e3, · · · , en be the edges of the cycle G∗ in that order. Let the values of the edges

e1, e2, e3, · · · , en be respectively (c1, k1)(c2, k2), (c3, k3), · · · , (cn, kn) such that ci > ci+1 and

ki < ki+1 for i = 1, 2, · · · , n− 1,

d(2)µ1(v1) = {µ2(e1) ∧ µ2(e2)} + {µ2(en) ∧ µ2(en−1)}
= {c1 ∧ c2} + {cn ∧ cn−1}
= c2 + cn.

d(2)µ1(v2) = {µ2(e1) ∧ µ2(en)} + {µ2(e2) ∧ µ2(e3)}
= {c1 ∧ cn} + {c2 ∧ c3}
= cn + c3.

For (3 ≤ i ≤ n− 1),

d(2)µ1(vi) = {µ2(ei−1) ∧ µ2(ei−2)} + {µ2(ei+1) ∧ µ2(ei)}
= {ci−1 ∧ ci−2} + {ci ∧ ci+1}
= ci−1 + ci+1.
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d(2)µ1(vn) = {µ2(e1) ∧ µ2(en)} + {µ2(en−1) ∧ µ2(en−2)}
= {c1 ∧ cn} + {cn−1 ∧ cn−2}
= cn + cn−1.

Now

d(2)γ1(v1) = {γ2(e1) ∨ γ2(e2)} + {γ2(en) ∨ γ2(en−1)}
= {k1 ∨ k2} + {kn ∨ kn−1}
= k2 + kn.

d(2)γ1(v2) = {γ2(e1) ∨ γ2(en)} + {γ2(e2) ∨ γ2(e3)}
= {k1 ∨ kn} + {k2 ∨ k3}
= kn + k3.

For 3 ≤ i ≤ n− 1,

d(2)γ1(vi) = {γ2(ei−1) ∨ γ2(ei−2)} + {γ2(ei+1) ∨ γ2(ei)}
= {ki−1 ∨ ki−2} + {ki ∨ ki+1}
= ki−1 + ki+1.

d(2)γ1(vn) = {γ2(e1) ∨ γ2(en)} + {γ2(en−1) ∨ γ2(en−2)}
= {k1 ∨ kn} + {kn−1 ∨ kn−2}
= kn + kn−1.

Here, Every two adjacent vertices have distinct d2- pseudo degrees. Hence G is 2-pseudo

neighbourly irregular intuitionistic fuzzy graph. 2
Remark 4.4 Even if the values of the edges e1, e2, e3, · · · , en are respectively (c1, k1), (c2, k2),

(c3, k3), · · · , (cn, kn) such that ci > ci+1 and ki < ki+1, for i = 1, 2, · · · , n−1, then then G need

not be 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Remark 4.5 Let G : (A,B) be an intuitionistic fuzzy graph on a cycle G∗ : (V,E) of length n.

If the values of the edges e1, e2, e3, · · · , en are respectively (c1, k1), (c2, k2), (c3, k3), · · · , (cn, kn)

are all distinct, then G need not be 2-pseudo neighbourly irregular intuitionistic fuzzy graph.

§5. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on a

Bi-star Bn,m(m 6= n) with Specific Membership Functions

In this section, Theorems 5.1 and 5.6 provide 2-pseudo neighbourly irregularity on intuitionistic

fuzzy graph G : (A,B) on G∗ : (V,E) which is a Bistar Bn,m(m 6= n).

Theorem 5.1 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E) which is a Bi-star

Bn,m(m 6= n). If B is a constant function, then G is 2-pseudo neighbourly irregular intuitionistic
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fuzzy graph.

Proof Let v1, v2, v3, · · · , vn be the vertices adjacent to the vertex x and u1, u2, u3, · · · , um

be the vertices adjacent to the vertex y and xy is the middle edge of K2. Since B is a constant

function, then B(uv) = (c1, c2), a constant for all uv ∈ E. So, d(2)(vi) = n(c1, c2), (1 ≤
i ≤ n − 1), d(2)(x) = m(c1, c2), d(2)(y) = n(c1, c2) and d(2)(ui) = m(c1, c2), (1 ≤ i ≤ m).

Then, d(a)(2)(vi) = m(c1, c2), (1 ≤ i ≤ n − 1), d(a)(2)(x) = n(c1, c2), d(a)(2)(y) = m(c1, c2)

and d(a)(2)(ui) = n(c1, c2), (1 ≤ i ≤ m). Hence d(a)(2)(vi) 6= d(a)(2)(x), (1 ≤ i ≤ n) and

d(a)(2)(x) 6= d(a)(2)(y) and d(a)(2)(ui) 6= d(a)(2)(y), (1 ≤ i ≤ m). Hence G is 2-pseudo neighbourly

irregular intuitionistic fuzzy graph. 2
Remark 5.2 Even if B is a constant function, then G need not be 2-pseudo neighbourly totally

irregular intuitionistic fuzzy graph.

Remark 5.3 Converse of Theorem 5.1 need not be true.

Theorem 5.4 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E) which is a

Bi-star Bn,m(m 6= n). If the pendant edges have the same membership values less than or

equal to membership value of the middle edge and same non-membership values greater than or

equal to non-membership value of the middle edge, then G is a 2-pseudo neighbourly irregular

intuitionistic fuzzy graph.

Proof Let v1, v2, v3, · · · , vn be the vertices adjacent to the vertex x and u1, u2, u3, · · · , um

be the vertices adjacent to the vertex y and xy is the middle edge of K2. If the pendant edges

have the same membership value then

µ2(ei) =





c1, if ei is an pendant edge.

c2, if ei is an middle edge.
γ2(ei) =





k1, if ei is an pendant edge.

k2, if ei is an middle edge.

If c1 = c2 and k1 = k2 then B is a constant function. By Theorem 5.1, G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

If c1 < c2, and k1 > k2, then d(2)(vi) = n(c1, k1), (1 ≤ i ≤ n), d(2)(x) = m(c1, k1), d(2)(y) =

n(c1, k1), and d(2)(ui) = m(c1, k1), (1 ≤ i ≤ m).

Also, d(a)(2)(vi) = m(c1, k1), (1 ≤ i ≤ n), d(a)(2)(x) = n(c1, k1), d(a)(2)(y) = m(c1, k1), and

d(a)(2)(ui) = n(c1, k1), (1 ≤ i ≤ m).

Hence d(a)(2)(vi) 6= d(a)(2)(x),(1 ≤ i ≤ n), d(a)(2)(x) 6= d(a)(2)(y), d(a)(2)(ui) 6= d(a)(2)(y),

(1 ≤ i ≤ m) and G is a 2-pseudo neighbourly irregular intuitionistic fuzzy graph. 2
Remark 5.5 Even if the pendant edges have the same membership values less than or equal to

membership value of the middle edge and same non-membership values greater than or equal

to membership value of the middle edge, then G need not be 2-pseudo neighbourly totally

irregular intuitionistic fuzzy graph.
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§6. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on Sub(Bn,m) with

Specific Membership Functions

In this section, Theorem 6.1 provides a condition for 2-pseudo neighbourly irregularity on

intuitionistic fuzzy graph G : (A,B) on G∗ : (V,E), Sub(Bn,m), n,m ≥ 3.

Theorem 6.1 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E) which is a

Sub(Bn,m), n,m ≥ 3. If B is a constant function, then G is 2-pseudo neighbourly irregular

intuitionistic fuzzy graph.

Proof Let v1, v2, v3, · · · , vn be the vertices adjacent to the vertex x and u1, u2, u3, · · · , um

be the vertices adjacent to the vertex y and xy is the middle edge of K2. Subdivide each edge

of Bn,m.

Then the additional edges are xwi, wivi (1 ≤ i ≤ n) and yti, tiui (1 ≤ i ≤ n) and two more

edges xs, sy.

If B is a constant function say B(uv) = (c1, c2), for uv ∈ E.

Case 1. If n 6= m, then d(2)(vi) = (c1, c2), (1 ≤ i ≤ n), d(2)(wi) = n(c1, c2), (1 ≤ i ≤ n),

d(2)(x) = (n+ 1)(c1, c2), d(2)(s) = (m+ n)(c1, c2), d(2)(y) = (m+ 1)(c1, c2), d(2)(ti) = m(c1, c2),

(1 ≤ i ≤ m), and d(2)(ui) = (c1, c2), (1 ≤ i ≤ m).

Hence we have, d(a)(2)(vi) 6= d(a)(2)(wi), (1 ≤ i ≤ n) and d(a)(2)(wi) 6= d(a)(2)(x), (1 ≤
i ≤ n), d(a)(2)(x) 6= d(a)(2)(s), d(a)(2)(s) 6= d(a)(2)(y), d(a)(2)(ti) 6= d(a)(2)(y), (1 ≤ i ≤ m), and

d(a)(2)(ti) 6= d(a)(2)(ui), (1 ≤ i ≤ m).

Hence G is a 2-pseudo neighbourly irregular intuitionistic fuzzy graph.

Case 2. If n = m, then d(2)(vi) = (c1, c2), (1 ≤ i ≤ n), d(2)(wi) = n(c1, c2), (1 ≤ i ≤ n),

d(2)(x) = (n + 1)(c1, c2), d(2)(s) = (2n)(c1, c2), d(2)(y) = (n + 1)(c1, c2), d(2)(ti) = n(c1, c2),

(1 ≤ i ≤ n), and d(2)(ui) = (c1, c2), (1 ≤ i ≤ n).

Hence we have, d(a)(2)(vi) 6= d(a)(2)(wi), (1 ≤ i ≤ n), d(a)(2)(wi) 6= d(a)(2)(x), (1 ≤ i ≤ n),

d(a)(2)(x) 6= d(a)(2)(s), d(a)(2)(s) 6= d(a)(2)(y), d(a)(2)(ti) 6= d(a)(2)(y), (1 ≤ i ≤ m), d(a)(2)(ti) 6=
d(a)(2)(ui), (1 ≤ i ≤ m) .

Hence G is a 2-pseudo neighbourly irregular intuitionistic fuzzy graph. 2
Remark 6.2 Even if B is a constant function, then G need not be 2-pseudo neighbourly totally

irregular intuitionistic fuzzy graph.

Remark 6.3 Converse of the Theorem 6.1 need not be true.

§7. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on a Path of n

Vertices with Specific Membership Functions

In this section, Theorems 7.1 and 7.4 provides a condition for 2-pseudo neighbourly irregularity

on intuitionistic fuzzy graph G : (A,B) on a path G∗ : (V,E) on n vertices.

Theorem 7.1 Let G : (A,B) be an intuitionistic fuzzy graph on a path G∗ : (V,E) on n vertices.
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If the membership values of the edges e1, e2, e3, · · · , en−1 are respectively c1, c2, c3, · · · , cn−1 such

that c1 < c2 < c3 < · · · < cn−1, and non-membership values of the edges e1, e2, e3, . . . , en−1

are respectively k1, k2, k3, · · · , kn−1 such that k1 > k2 > k3 > · · · > kn−1, then G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

Proof Let G : (A,B) be an intuitionistic fuzzy graph on a path G∗ : (V,E) on n vertices.

Let e1, e2, e3, · · · , en−1 be the edges of the path G∗ in that order. Let membership value of the

edges e1, e2, e3, · · · , en−1 be respectively c1, c2, c3, · · · , cn−1 such that c1 < c2 < c3, · · · , < cn−1

and non-membership values of the edges e1, e2, e3, · · · , en−1 are respectively k1, k2, k3, · · · , kn−1

such that k1 > k2 > k3 > · · · > kn−1.

d(2)(v1) = {(µ2(e1) ∧ µ2(e2), γ2(e1) ∨ γ2(e2)} = {c1 ∧ c2, k1 ∨ k2} = (c1, k1).

d(2)(v2) = {(µ2(e2) ∧ µ2(e3), γ2(e2) ∨ γ3(e2)} = {c2 ∧ c3, k2 ∨ k3} = (c2, k2).

For 3 ≤ i ≤ n− 2,

d(2)(vi) = {{µ2(ei−1) ∧ µ2(ei−2)} + {µ2(ei) ∧ µ2(ei+1)}, {γ2(ei−1) ∧ γ2(ei−2)}
+{γ2(ei) ∧ γ2(ei+1)}} = (ci−2 + ci, ki−2 + ki).

d(2)(vn−1) = {µ2(en−3) ∧ µ2(en−2)}, {γ2(en−3) ∧ γ2(en−2)}
= {cn−3 ∧ cn−2, kn−3 ∧ kn−2} = (cn−3, kn−3).

d(2)(vn) = {µ2(en−1) ∧ µ2(en−2)}, {γ2(en−1) ∧ γ2(en−2)}
= {cn−1 ∧ cn−2, kn−1 ∧ kn−2} = (cn−2, kn−2).

So, every two adjacent vertices have distinct d2- pseudo degrees. Hence G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph. 2
Remark 7.2 Even if the membership values of the edges e1, e2, e3, · · · , en−1 are respectively

c1, c2, c3, · · · , cn−1 such that c1 < c2 < c3 < · · · < cn−1 and non-membership values of the edges

e1, e2, e3, · · · , en−1 are respectively k1, k2, k3, · · · , kn−1 such that k1 > k2 > k3 > · · · > kn−1.

then G need not be 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Theorem 7.3 Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E), a path on n vertices.

If the membership values of the edges e1, e2, e3, · · · , en−1 are respectively c1, c2, c3, · · · , cn−1 such

that c1 > c2 > c3 > · · · , > cn−1 and non-membership values of the edges e1, e2, e3, · · · , en−1

are respectively k1, k2, k3, · · · , kn−1 such that k1 < k2 < k3 < · · · < kn−1. then G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

Proof Let G : (A,B) be an intuitionistic fuzzy graph on G∗ : (V,E) is a path on n vertices.

Let e1, e2, e3, · · · , en−1 be the edges of the path G∗ in that order. Let membership values of the

edges e1, e2, e3, · · · , en−1 are respectively c1, c2, c3, . . . , cn−1 such that c1 > c2 > c3 > · · · > cn−1

and non-membership values of the edges e1, e2, e3, · · · , en−1 are respectively k1, k2, k3, · · · , kn−1
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such that k1 < k2 < k3 < · · · < kn−1.

d(2)(v1) = {(µ2(e1) ∧ µ2(e2), γ2(e1) ∧ γ2(e2))} = {c1 ∧ c2, k1 ∨ k2} = (c2, k2).

d(2)(v2) = {(µ2(e2) ∧ µ2(e3), γ2(e2) ∧ γ2(e3))} = {c2 ∧ c3, k2 ∨ k3} = (c3, k3).

For 3 ≤ i ≤ n− 2,

d(2)(vi) = {µ2(ei−1) ∧ µ2(ei−2)} + {µ2(ei) ∧ µ2(ei+1)} + {γ2(ei−1) ∧ γ2(ei−2)}
+{γ2(ei) ∧ γ2(ei+1)} = (ci−1 + ci+1, ki−1 + ki+1)

d(2)(vn−1) = {µ2(en−3) ∧ µ2(en−2), γ2(en−3) ∧ γ2(en−2)} = {cn−3 ∧ cn−2, kn−3 ∧ kn−2}
= (cn−2, kn−2).

d(2)(vn) = {µ2(en−1) ∧ µ2(en−2), γ2(en−1) ∧ γ2(en−2)} = {cn−1 ∧ cn−2, kn−1 ∧ kn−2}
= (cn−1, kn−1).

Every two adjacent vertices have distinct d2-pseudo degrees. Hence G is a 2-pseudo neigh-

bourly irregular intuitionistic fuzzy graph. 2
Remark 7.4 Even if the membership values of the edges e1, e2, e3, · · · , en−1 are respectively

c1, c2, c3, · · · , cn−1 such that c1 > c2 > c3 > · · · , > cn−1 and non-membership values of the

edges e1, e2, e3, · · · , en−1 are respectively k1, k2, k3, · · · , kn−1 such that k1 < k2 < k3 < · · · <
kn−1. then G need not be 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.
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(Faculty of Arts and Sciences, Department of Mathematics, Sakarya University, Sakarya, 54187, Turkey)

Kemal Taşköprü
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E-mail: ialtintas@sakarya.edu.tr, kemal.taskopru@bilecik.edu.tr

Abstract: In this paper, we present a generalization of two variables of the Alexander

polynomial for a given oriented knot diagram. We define the Alexander polynomial of two

variables by an easy method which will be achieved as a result of the interpretation of

the crossing point as a particle with input-output spins in the mathematical physics. The

classical Alexander polynomial is the case of one of the variables to be equal to 1 in the

Alexander polynomial of two variables.
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§1. Introduction

A knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode

some of the properties of a given knot. The Alexander polynomial is the first knot polynomial.

It was introduced by J. W. Alexander in 1928 ([1]).

There are several ways to calculate the Alexander polynomial. One of them is the procedure

given by Alexander in his paper [1]. This procedure is briefly as follows: Given an oriented

diagram of the knot with n crossings. There are n + 2 regions bounded by the knot diagram.

The Alexander polynomial is calculated by using a matrix of size n× (n+ 2). The rows of the

matrix correspond to crossings, and the columns to the regions. Another one is to calculate

from the Seifert matrix ([2]). The Alexander polynomial can also be calculated by using the

free derivative defined by Fox [3,4].

Other knot polynomials were not found until almost 60 years later. In the 1960s, J.Conway

came up with a skein relation for a version of the Alexander polynomial, usually referred to as

the AlexanderConway polynomial [5]. The significance of this skein relation was not realized

until the early 1980s, when V. Jones discovered the Jones polynomial [6,7]. This led to the

discovery of more knot polynomials, such as the so-called Homfly polynomial [8]. The Homfly

polynomial is a generalization of the AlexanderConway polynomial and the Jones polynomial.

Soon after Jones’ discovery, Louis Kauffman noticed the Jones polynomial could be computed

1Received February 24, 2016, Accepted November 5, 2016.
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by means of a state-sum model, which involved the bracket polynomial, an invariant of framed

knots [9-13]. This opened up avenues of research linking knot theory and statistical mechanics.

In recent years, the Alexander polynomial has been shown to be related to Floer homol-

ogy. The graded Euler characteristic of the knot Floer homology of Ozsváth and Szabó is the

Alexander polynomial [14,15].

In this paper, we work on a generalization of two variables of the Alexander polynomial.

We define the Alexander polynomial of two variables by an easy method. In the method, the

Alexander polynomial of two variables is calculated by using a matrix of size n× n. The rows

of the matrix correspond to crossings of the oriented diagram of the knot with n crossings, and

the columns to the arcs. The classical Alexander polynomial is the case of one of the variables

to be equal to 1 in the Alexander polynomial of two variables.

§2. Alexander Polynomial of Two Variables

A link K of k components is a subset of R3 ⊂ R3 ∪{∞} = S3, consisting of k disjoint piecewise

simple closed curves; a knot is a link with one component. In fact, two knots (or links) in R3

can be deformed continuously one into the other if and only if any diagram of one knot can

be transformed into a diagram for the knot via a sequence of the Reidmeister moves formed in

Figure 1. The equivalence relation on diagrams that is generated by all the Reidmeister moves

is called ambient isotopy. In the study, the word knot will be used instead knot and link.

I I0 I
*

L L0 L
*

T'T

Figure 1

The first Reidemeister move: I ↔ I0 or I∗ ↔ I0;The second Reidemeister move:

L↔ L0 or L∗ ↔ L0 and the third Reidemeister move: T ↔ T ′.

Let K be an oriented knot diagram with n crossings. Three arcs of the curve of the oriented

diagram K encounters at a crossing. One of these arcs is overpass arc and the other two are

underpass arcs that follow one another at the crossing point. Let ci denote the ith crossing of

the oriented diagram K, i = 1, 2, · · · , n. We assume that the arcs si, sj and sk are encounter

at the crossing ci, see Figure 2.

si
sj

sk

ci

si sj

sk

ci

(a) (b)

Figure 2 Crossings with positive sign (a) and negative sign (b)
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In mathematical physics if we interpret the crossing point as a particle with incoming spins

si, sj and outgoing spins sj , sk for the crossing in Figure 2a, then an associated mathematical

expression to the crossing point can be regarded as the probability amplitude for this particular

combination of spins in and out [13]. We can make a similar comment for the crossing in Figure

2b, For now it is convenient to consider only the spins. The conservation of spin suggests the

rule that

si + sj = sj + sk.

If x and y are algebraic variables, then

xsi + ysj − xsj − ysk = xsi + (y − x)sj − ysk = 0

is a assigned equation to the crossing in Figure 2a. With the same thought, we can assign an

equation to the crossing in Figure B. We say the above equation, the crossing equation.

By assigning a crossing equation for each crossing of the oriented diagram K we have a

homogeneous system of n equations in n unknowns, and call diagram equation.

Since there are three unknowns (arcs) in a crossing equation, we get zero the coefficient

of (n − 3) arcs that are not in this crossing equation. Thus, we obtain a coefficients matrix

M of size n × n of the diagram equation. It is easy to see that the determinant, |M|, of the

coefficients matrix M is zero.

We may then regarded the matrix M as having entries in the ring Z[x, x−1, y, y−1] along

with its subring Z[x, y] has the property that any finite set of elements has a greatest common

divider. Any integer domain with these properties is called a greatest common divider. De-

terminants of the minors of size (n− 1) × (n− 1) of the matrix M are equal with multiplying

∓xkyl, k, l ∈ Z that has the greatest common divider.

Definition 2.1 We will call the Alexander polynomial of two variables that is the greatest

common divider of determinants of minors of size (n− 1) × (n− 1) of the matrix M and we’ll

denote it by ∇(x, y).

If ∇K1(x, y) and ∇K2(x, y) are polynomials that are equal with such a factor, we write

∇K1(x, y)
.
= ∇K2(x, y). Any one of the minors of size (n − 1) × (n − 1) of M can be taken

to be a presentation matrix for ∇(x, y) and its determinant can be taken to be ∇(x, y) with

multiplying by ∓xkyl, k, l ∈ Z, see [4,16].

Example 2.2 We now calculate the Alexander polynomial of two variables of the trefoil knot

as an example. Let K be the right-hand diagram trefoil knot drawn in Figure 3. The diagram

equation of the knot K is as follows:

xs3 + ys2 − xs2 − ys1 = −ys1 + (y − x)s2 + xs3 = 0

xs2 + ys1 − xs1 − ys3 = (y − x)s1 + xs2 − ys3 = 0

xs1 + ys3 − xs3 − ys2 = xs1 − ys2 + (y − x)s3 = 0
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s1

s2

s3

c1

c2

c3

Figure 3 The right-hand trefoil knot.

The coefficients matrix MK of size 3 × 3 of this diagram equation is

MK =




−y y − x x

y − x x −y
x −y y − x


 .

The determinant, |Mk| of the coefficients matrix MK is zero. Hence, any one of the minors

of size 2 × 2 of the matrix MK , for instance, ∇11 is a presentation matrix and its determinant

is |∇11| = −x2 + xy − y2. Thus, the Alexander polynomial of two variables for the knot K;

∇K(x, y) = x2 − xy + y2.

We have ∇K(x, 1) = x2 − x + 1 for y = 1 (or ∇K(1, y) = 1 − y + y2 for x = 1). It is the

classical Alexander polynomial of the trefoil knot.

The following theorem gives that the Alexander polynomial of two variables is an invariant

of the knot.

Theorem 2.3 If K is an oriented knot diagram, then the Alexander polynomial of two variables,

∇K(x, y), of the knot K is an invariant of ambient isotopy.

Proof In order to prove that the Alexander polynomial is an invariant of ambient isotopy,

we must investigate the behavior of ∇K(x, y) under the Reidemeister moves given in Figure 1.

Here, we shall investigate the behavior of ∇K(x, y) under the diagrams given in Figure 4.

K K1 K2 K3

sn-3

sn-1 cn-1

cn
sn

sn-2

sn-1 sn-1

sn-1

sn-3 sn-3 sn-3

cn-1

cn-1
cn-1

cn

cn cn

sn

sn sn

sn-2 sn-2
sn-2

cn+1

cn+1

cn+1

sn+1

sn+1

sn+1

sn+2

cn+2

Figure 4

Diagrams for the proof of Theorem 2.3. For the first Reidemeister move: K ↔ K1;

for the second Reidemeister move: K ↔ K2; for the third Reidemeister move: K ↔ K3.
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Let K be the oriented knot diagram with n crossings given in Figure 4. The diagram

equation of the knot K is as follows:

. . . . . . . . .

xsn−1 + ysn−3 − xsn−3 − ysn = (y − x)sn−3 + xsn−1 − ysn = 0

xsn−3 + ysn − xsn − ysn−2 = xsn−3 − ysn−2 + (y − x)sn = 0

The coefficients matrix MK of size n× n of this diagram equation is

MK =




...
...

...
...

...

. . . y − x 0 x −y

. . . x −y 0 y − x


 .

Thus, any one of the minors of size (n − 1) × (n − 1) of the matrix MK , for instance,

∇11 is a presentation matrix and its determinant |∇11| = ∇K(x, y) with multiplying by ∓xkyl,

k, l ∈ Z.

Case 1. The behavior of ∇K(x, y) under the first Reidemeister move

The diagram equation of the diagram K1 with (n + 1) crossings given in Figure 4 is as

follows:

. . . . . . . . .

xsn−1 + ysn−3 − xsn−3 − ysn = (y − x)sn−3 + xsn−1 − ysn = 0

xsn−3 + ysn+1 − xsn+1 − ysn−2 = xsn−3 − ysn−2 + (y − x)sn+1 = 0

xsn + ysn − xsn+1 − ysn = xsn − xsn+1 = 0

Hence, we have the following coefficients matrix MK1 of size (n−1)×(n−1) of the diagram

equation.

MK1 =




...
...

...
...

...
...

. . . y − x 0 x −y 0

. . . x −y 0 0 y − x

. . . 0 0 0 x −x




=




...
...

...
...

...
...

. . . y − x 0 x −y 0

. . . x −y 0 y − x y − x

. . . 0 0 0 0 −x



.

Since |MK1 | = −x|MK | = 0, the minors of size (n − 1) × (n − 1) of MK1 are equal the

corresponding minors size (n− 1) × (n− 1) of MK and hence, ∇K(x, y)
.
= ∇K1(x, y). In that
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case ∇K(x, y) is unchanged under the first Reidemeister move.

Case 2. The behavior of ∇K(x, y) under the second Reidemeister move

We obtain the following diagram equation from the diagram K2 with (n + 2) crossings

given in Figure 4.

. . . . . . . . .

xsn−1 + ysn−3 − xsn−3 − ysn = (y − x)sn−3 + xsn−1 − ysn = 0

xsn−3 + ysn − xsn − ysn−2 = xsn−3 − ysn−2 + (y − x)sn = 0

xsn + ysn−2 − xsn+1 − ysn = ysn−2 + (x− y)sn − xsn+1 = 0

xsn+1 + ysn − xsn − ysn+2 = (y − x)sn + xsn+1 − ysn+2 = 0

The coefficients matrix MK2 of size (n+ 2) × (n+ 2) of the diagram equation of K2 here

is as follows.

MK2 =




...
...

...
...

...
...

...

. . . y − x 0 x −y 0 0

. . . x −y 0 y − x 0 0

. . . 0 y 0 x− y −x 0

. . . 0 0 0 y − x x −y




=




...
...

...
...

...
...

...

. . . y − x 0 x −y 0 0

. . . x −y 0 y − x 0 0

. . . 0 y 0 x− y −x 0

. . . 0 y 0 0 0 −y




.

Since |MK2 | = xy|MK | = 0, the minors of size (n − 1) × (n − 1) of MK2 are equal the

corresponding minors size (n− 1)× (n− 1) of MK and ∇K(x, y)
.
= ∇K2(x, y). Thus ∇K(x, y)

is unchanged under the second Reidemeister move.

Case 3. The behavior of ∇K(x, y) under the third Reidemeister move

We have the following diagram equation from the diagram K3 with (n+ 1) crossings given

in Figure 4.

. . . . . . . . .

xsn−1 + ysn − xsn − ysn+1 = xsn−1 + (y − x)sn − ysn+1 = 0

xsn−3 + ysn − xsn − ysn−2 = xsn−3 − ysn−2 + (y − x)sn = 0

xsn+1 + ysn−2 − xsn−2 − ysn = (y − x)sn−2 − ysn + xsn+1 = 0

The coefficients matrix MK3 of size (n+ 1) × (n+ 1) of the diagram equation of K3 here
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is as follows.

MK3 =




...
...

...
...

...
...

. . . 0 0 x y − x −y

. . . x −y 0 y − x 0

. . . 0 y − x 0 −y x




=




...
...

...
...

...
...

. . . y − x 0 x −y x− y

. . . x −y 0 y − x 0

. . . 0 0 0 0 x



.

Since |MK3 | = x|MK | = 0, the minors of size (n − 1) × (n − 1) of MK3 are equal the

corresponding minors size (n− 1) × (n− 1) of MK and ∇K(x, y)
.
= ∇K3(x, y). So ∇K(x, y) is

unchanged under the third Reidemeister move. Thus proof is completed. 2
It is easy to see that, in present of the first and the second Reidemeister moves, the diagram

K3 in Figure 4 is equivalent to the third Reidemeister move, see Figure 5.

II III I

Figure 5 Equivalence of K to K3 under the third Reidemeister move.

There are different variants, depending on orientation, of the diagrams in Figure 4. The-

orem 2.1 can also be proved in the same way for these variants of the diagrams. All possible

variants of the diagrams used in the proof of Theorem 2.1 is drawn in Appendix.

Appendix

K1 K '1 K '2 K '3

K *'1 K *'2 K *'3K *2 K *3K *1K*

K2 K3K

Figure 6
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§1. Introduction

Bishop frame extended to study canal and tubular surfaces [1]. Rotating camera orientations

relative to a stable forward-facing frame can be added by various techniques such as that of

Hanson and Ma [2]. This special frame also extended to height functions on a space curve [3].

The construction of the Bishop frame is due to L. R. Bishop and the advantages of Bishop

frame, and comparisons of Bishop frame with the Frenet frame in Euclidean 3-space were given

by Bishop [4] and Hanson [5]. That is why he defined this frame that curvature may vanish

at some points on the curve. That is, second derivative of the curve may be zero. In this

situation, an alternative frame is needed for non continously differentiable curves on which

Bishop (parallel transport frame) frame is well defined and constructed in Euclidean and its

ambient spaces [6,7,8].

A regular curve in Euclidean 3-space, whose position vector is composed of Frenet frame

vectors on another regular curve, is called a Smarandache curve. M. Turgut and S. Yılmaz

have defined a special case of such curves and call it Smarandache TB2 curves in the space E4
1

([9]) and Turgut also studied Smarandache breadth of pseudo null curves in E4
1 ([10]). A.T.Ali

has introduced some special Smarandache curves in the Euclidean space [11]. Moreover, special

1Received April 3, 2016, Accepted November 6, 2016.
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Smarandache curves have been investigated by using Bishop frame in Euclidean space [12].

Special Smarandache curves according to Sabban frame have been studied by [13]. Besides,

some special Smarandache curves have been obtained in E3
1 by [14].

Curves of constant breadth were introduced by L.Euler [15]. Some geometric properties of

plane curves of constant breadth were given in [16]. And, in another work [17], these properties

were studied in the Euclidean 3-space E3. Moreover, M Fujivara [18] had obtained a problem to

determine whether there exist space curve of constant breadth or not, and he defined breadth

for space curves on a surface of constant breadth. In [19], these kind curves were studied in four

dimensional Euclidean space E4. In [20], Yılmaz introduced a new version of Bishop frame in

E3
1 and called it Bishop frame of type-2 of regular curves by using common vector field as the

binormal vector of Serret-Frenet frame. Also, some characterizations of spacelike curves were

given according to the same frame by Yılmaz and Ünlütürk [21]. A regular curve more than

2 breadths in Minkowski 3-space is called a Smarandache breadth curve. In the light of this

definition, we study special cases of Smarandache curves according to the new frame in E3
1 . We

investigate position vector of simple closed spacelike curves and give some characterizations in

case of constant breadth according to type-2 Bishop frame in E3
1 . Thus, we extend this classical

topic in E3 into spacelike curves of constant breadth in E3
1 , see [22] for details.

In this study, we introduce new Smarandache curves of a spacelike curve according to the

Bishop frame of type-2 in E3
1 . Also, Smarandache breadth curves are defined according to this

frame in Minkowski 3-space. A third order vectorial differential equation of position vector of

Smarandache breadth curves has been obtained in Minkowski 3-space.

§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the Minkowski 3–space E3
1 are briefly presented. There exists a vast literature on the subject

including several monographs, for example [23,24].

The three dimensional Minkowski space E3
1 is a real vector space R3 endowed with the

standard flat Lorentzian metric given by

〈, 〉L = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . This metric is an indefinite one.

Let u = (u1, u2, u3) and v = (v1, v2, v3) be arbitrary vectors in E3
1 , the Lorentzian cross

product of u and v is defined as

u× v = − det




−i j k

u1 u2 u3

v1 v2 v3


 .

Recall that a vector v ∈ E3
1 has one of three Lorentzian characters: it is a spacelike vector

if 〈v, v〉 > 0 or v = 0; timelike 〈v, v〉 < 0 and null (lightlike) 〈v, v〉 = 0 for v 6= 0. Similarly, an
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arbitrary curve δ = δ(s) in E3
1 can locally be spacelike, timelike or null (lightlike) if its velocity

vector α′ are ,respectively, spacelike, timelike or null (lightlike), for every s ∈ I ⊂ R. The

pseudo-norm of an arbitrary vector a ∈ E3
1 is given by ‖a‖ =

√
|〈a, a〉|. The curve α = α(s) is

called a unit speed curve if its velocity vector α′ is unit one i.e., ‖α′‖ = 1. For vectors v, w ∈ E3
1 ,

they are said to be orthogonal each other if and only if 〈v, w〉 = 0. Denote by {T,N,B} the

moving Serret-Frenet frame along the curve α = α(s) in the space E3
1 .

For an arbitrary spacelike curve α = α(s) in E3
1 , the Serret-Frenet formulae are given as

follows 


T ′

N ′

B′


 =




0 κ 0

γκ 0 τ

0 τ 0


 .




T

N

B


 , (2.1)

where γ = ∓1, and the functions κ and τ are, respectively, the first and second (torsion)

curvature. T (s) = α′(s), N(s) =
T ′(s)

κ(s)
, B(s) = T (s) ×N(s) and τ(s) =

det(α′, α′′, α′′′)

κ2(s)
.

If γ = −1, then α(s) is a spacelike curve with spacelike principal normal N and timelike

binormal B, its Serret-Frenet invariants are given as

κ(s) =
√
〈T ′(s), T ′(s)〉 and τ(s) = −〈N ′(s), B(s)〉 .

If γ = 1, then α(s) is a spacelike curve with timelike principal normal N and spacelike

binormal B, also we obtain its Serret-Frenet invariants as

κ(s) =
√
−〈T ′(s), T ′(s)〉 and τ(s) = 〈N ′(s), B(s)〉 .

The Lorentzian sphere S2
1 of radius r > 0 and with the center in the origin of the space E3

1

is defined by

S2
1(r) = {p = (p1, p2, p3) ∈ E3

1 : 〈p, p〉 = r2}.

Theorem 2.1 Let α = α(s) be a spacelike unit speed curve with a spacelike principal normal.

If {Ω1,Ω2, B} is an adapted frame, then we have




Ω′
1

Ω′
2

B′


 =




0 0 ξ1

0 0 −ξ2
−ξ1 −ξ2 0


 .




Ω1

Ω2

B


 (2.2)

Theorem 2.2 Let {T,N,B} and {Ω1,Ω2, B} be Frenet and Bishop frames, respectively. There

exists a relation between them as




T

N

B


 =




sinh θ(s) cosh θ(s) 0

cosh θ(s) sinh θ(s) 0

0 0 1


 .




Ω1

Ω2

B


 , (2.3)
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where θ is the angle between the vectors N and Ω1.

ξ1 = τ(s) cosh θ(s), ξ2 = τ(s) sinh θ(s).

The frame {Ω1,Ω2, B} is properly oriented, and τ and θ(s) =
s∫
0

κ(s)ds are polar coordinates

for the curve α = α(s). We shall call the set {Ω1,Ω2, B, ξ1, ξ2} as type-2 Bishop invariants

of the curve α = α(s) in E3
1 .

§3. Smarandache Curves of a Spacelike Curve

In this section, we will characterize all types of Smarandache curves of spacelike curve α = α(s)

according to type-2 Bishop frame in Minkowski 3-space E3
1 .

3.1 Ω1Ω2−Smarandache Curves

Definition 3.1 Let α = α(s) be a unit speed regular curve in E3
1 and {Ωα

1 ,Ω
α
2 , Bα} be its

moving Bishop frame. Ωα
1 Ωα

2−Smarandache curves are defined by

β(s∗) = 1√
2
(Ωα

1 + Ωα
2 ). (3.1)

Now we can investigate Bishop invariants of Ωα
1 Ωα

2−Smarandache curves of the curve α =

α(s). Differentiating (3.1) with respect to s gives

β̇ =
dβ

ds
.
ds∗

ds
=

1√
2
(ξα

1 − ξα
2 )Bα, (3.2)

and

Tβ.
ds∗

ds
=

1√
2
(ξα

1 − ξα
2 )Bα,

where
ds∗

ds
=

1√
2
|ξα

1 − ξα
2 | . (3.3)

The tangent vector of the curve β can be written as follows

Tβ = βα. (3.4)

Differentiating (3.4) with respect to s, we obtain

dTβ

ds∗
.
ds∗

ds
= −(ξα

1 Ωα
1 + ξα

2 Ωα
2 ). (3.5)

Substituting (3.3) into (3.5) gives

T ′
β = −

√
2

|ξα
1 − ξα

2 |
(ξα

1 Ωα
1 + ξα

2 Ωα
2 ).
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Then the first curvature and the principal normal vector field of β are, respectively, com-

puted as
∥∥∥T ′

β

∥∥∥ = κβ =

√
2

|ξα
1 − ξα

2 |
√
−(ξα

1 )2 + (ξα
2 )2,

and

Nβ =
−1√

−(ξα
1 )2 + (ξα

2 )2
(ξα

1 Ωα
1 + ξα

2 Ωα
2 ).

On the other hand, we express

Bβ =
−1√

−(ξα
1 )2 + (ξα

2 )2

∣∣∣∣∣∣∣∣

−Ωα
1 Ωα

2 βα

0 0 1

ξα
1 ξα

2 0

∣∣∣∣∣∣∣∣
,

So the binormal vector of β is computed as follows

Bβ =
−1√

−(ξα
1 )2 + (ξα

2 )2
(ξα

2 Ωα
1 + ξα

1 Ωα
2 ).

Differentiating (3.2) with respect to s in order to calculate the torsion of the curve β, we

obtain

β̈ =
1√
2
[−(ξα

1 + ξα
2 )ξα

1 Ωα
1 − (ξα

1 + ξα
2 )ξα

2 Ωα
2 + (ξ̇α

1 + ξ̇α
2 )Bα],

and similarly

...
β = 1√

2
[(−3ξα

1 ξ̇
α
1 − 2ξα

1 ξ̇
α
2 − ξ̇α

1 ξ
α
2 − ξα

1 ξ̇
α
1 )Ωα

1

+(−2ξ̇α
1 ξ

α
2 − 2(ξ̇α

2 )2 − ξα
1 ξ̇

α
2 − ξα

2 ξ̇
α
2 )Ωα

2

+(ξ̈α
1 + ξ̈α

2 − (ξα
1 )3 − (ξα

1 )2ξα
2 − ξα

1 (ξα
2 )2 + (ξα

2 )2)Bα].

The torsion of the curve β is found

τβ =
1

4
√

2

(ξα
1 − ξα

2 )2

(ξα
1 )2 + (ξα

2 )2
[(ξα

1 + ξα
2 )K2(s) − (ξα

1 + ξα
2 )ξα

2K1(s)],

where

K1(s) = −3ξα
1 ξ̇

α
1 − 2ξα

1 ξ̇
α
2 − ξ̇α

1 ξ
α
2 − ξα

1 ξ̇
α
1 ,

K2(s) = −2ξ̇α
1 ξ

α
2 − 2(ξ̇α

2 )2 − ξα
1 ξ̇

α
2 − ξα

2 ξ̇
α
2 ,

K3(s) = ξ̈α
1 + ξ̈α

2 − (ξα
1 )3 − (ξα

1 )2ξα
2 − ξα

1 (ξα
2 )2 + (ξα

2 )2.

3.2 Ω1B−Smarandache Curves

Definition 3.2 Let α = α(s) be a unit speed regular curve in E3
1 and {Ωα

1 ,Ω
α
2 , Bα} be its

moving Bishop frame. Ωα
1B−Smarandache curves are defined by

β(s∗) =
1√
2
(Ωα

1 +Bα). (3.6)
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Now we can investigate Bishop invariants of Πα
1Bα−Smarandache curves of the curve

α = α(s). Differentiating (3.6) with respect to s, we have

β̇ =
dβ

ds
.
ds∗

ds
=

1√
2
(ξα

1 Bα − ξα
1 Ωα

1 − ξα
2 Ωα

2 ), (3.7)

and

Tβ.
ds∗

ds
=

1√
2
(ξα

1Bα − ξα
1 Ωα

1 − ξα
2 Ωα

2 ),

where
ds∗

ds
=
ξα
2

2
. (3.8)

The tangent vector of the curve β can be written as follows

Tβ =

√
2

ξα
2

(−ξα
1 Ωα

1 − ξα
2 Ωα

2 + ξα
1Bα). (3.9)

Differentiating (3.9) with respect to s gives

dTβ

ds∗
.
ds∗

ds
=

ξα
2√
2
(L1(s)Ω

α
1 + L2(s)Ω

α
2 + L3(s)Bα), (3.10)

where

L1(s) = −ξα
1 − (ξα

1 )2 +
ξα
1 ξ̇

α
2

ξα
2

, L2(s) = ξα
1 ξ

α
2 ,

L3(s) = −(ξα
1 )2 + (ξα

2 )2 + ξ̇α
1 − ξα

1 ξ̇
α
2

ξα
2

.

Substituting (3.8) into (3.10) gives

T ′
β =

2
√

2

(ξα
2 )2

(L1(s)Ω
α
1 + L2(s)Ω

α
2 + L3(s)Bα),

then the first curvature and the principal normal vector field of β are, respectively,

∥∥∥T ′
β

∥∥∥ = κβ =
2
√

2

(ξα
2 )2

√
L2

1(s) + L2
2(s) − L2

3(s),

and

Nβ =
−1√

L2
1(s) + L2

2(s) − L2
3(s)

(L1(s)Ω
α
1 + L2(s)Ω

α
2 + L3(s)Bα).

On the other hand, we have

Bβ =

√
2

ξα
2

√
L2

1(s) + L2
2(s) − L2

3(s)
[(ξα

1 L2(s) + ξα
2 L3(s))Ω

α
1

+(ξα
1 L1(s) + ξα

1 L3(s))Ω
α
2 + (ξα

2 L1(s) − ξα
1 L2(s))Bα].

Differentiating (3.7) with respect to s in order to calculate the torsion of the curve β, we
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find

β̈ =
1√
2
[−((ξα

1 )2 + ξ̇α
1 )Ωα

1 + (−ξα
1 ξ̇

α
2 − ξ̇α

2 )Ωα
2 − (ξ̈α

1 − (ξα
1 )2 + (ξα

2 )2)Bα],

and similarly
...
β =

1√
2
[(−2ξα

1 ξ̇
α
1 − ξ̈α

1 )Ωα
1 + (−ξ̇α

1 ξ̇
α
2 − ξ̈α

2 − ξα
1 ξ̈

α
2 )Ωα

2

+(−(ξα
1 )3 − ξα

1 ξ̇
α
1 + ξα

1 ξ̇
α
2 ξ

α
2 − ξα

2 ξ̇
α
2 )Bα].

The torsion of the curve β is

τβ =
(εα

2 )4

16
√

2
[−ξα

1M1(s) − ξα
2M2(s) − ξα

1M3(s)],

where

M1(s) = −3ξα
1 ξ̇

α
1 − 2ξα

1 ξ̇
α
2 − ξ̇α

1 ξ
α
2 − ξα

1 ξ̇
α
1 ,

M2(s) = −2ξ̇α
1 ξ

α
2 − 2(ξ̇α

2 )2 − ξα
1 ξ̇

α
2 − ξα

2 ξ̇
α
2 ,

M3(s) = ξ̈α
1 + ξ̈α

2 − (ξα
1 )3 − (ξα

1 )2ξα
2 − ξα

1 (ξα
2 )2 + (ξα

2 )2.

3.3 Ω2B−Smarandache Curves

Definition 3.3 Let α = α(s) be a unit speed regular curve in E3
1 and {Ωα

1 ,Ω
α
2 , Bα} be its

moving Bishop frame. Ωα
2B−Smarandache curves are defined by

β(s∗) =
1√
2
(Ωα

2 +Bα). (3.11)

Now we can investigate Bishop invariants of Ωα
1Bα−Smarandache curves of the curve

α = α(s). Differentiating (3.11) with respect to s, we have

β̇ =
dβ

ds
.
ds∗

ds
=

1√
2
(−ξα

2Bα − ξα
1 Ωα

1 − ξα
2 Ωα

2 ), (3.12)

and

Tβ .
ds∗

ds
=

1√
2
(−ξα

1 Ωα
1 − ξα

2 Ωα
2 − ξα

2Bα),

where
ds∗

ds
=

√
2(ξα

2 )2 − (ξα
1 )2

2
. (3.13)

The tangent vector of the curve β can be written as follows

Tβ =
−ξα

1 Ωα
1 − ξα

2 Ωα
2 − ξα

2Bα√
2(ξα

2 )2 − (ξα
1 )2

. (3.14)

Differentiating (3.14) with respect to s gives

dTβ

ds∗
.
ds∗

ds
= (N1(s)Ω

α
1 +N2(s)Ω

α
2 +N3(s)Bα), (3.15)
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where

N1(s) = 1
2 (4ξα

2 ξ̇
α
2 − 2ξα

1 ξ̇
α
1 )(2(ξα

2 )2 − (ξα
1 )2)

−3
2 ξα

1

−(2(ξα
2 )2 − (ξα

1 )2)
−1
2 ξ̇α

1 + (2(ξα
2 )2 − (ξα

1 )2)
−1
2 ξα

1 ξ
α
2 ,

N2(s) = 1
2 (4ξα

2 ξ̇
α
2 − 2ξα

1 ξ̇
α
1 )(2(ξα

2 )2 − (ξα
1 )2)

−3
2 ξα

1

−(2(ξα
2 )2 − (ξα

1 )2)
−1
2 ξ̇α

1 + (2(ξα
2 )2 − (ξα

1 )2)(ξα
2 )2,

N3(s) = 1
2 (4ξα

2 ξ̇
α
2 − 2ξα

1 ξ̇
α
1 )(2(ξα

2 )2 − (ξα
1 )2)

−3
2

−(2(ξα
2 )2 − (ξα

1 )2)
−1
2 ((ξα

2 )2 − (ξα
1 )2 − ξ̇α

2 ).

Substituting (3.13) into (3.15) gives

T ′
β =

√
2

2(ξα
2 )2 − (ξα

1 )2
(N1(s)Ω

α
1 +N2(s)Ω

α
2 +N3(s)Bα),

then the first curvature and the principal normal vector field of β are, respectively, found as

follows

κβ =
∥∥∥T ′

β

∥∥∥ =

√
2

2(ξα
2 )2 − (ξα

1 )2

√
N2

1 (s) +N2
2 (s) +N2

3 (s),

and

Nβ =
−1√

N2
1 (s) +N2

2 (s) +N2
3 (s)

(N1(s)Ω
α
1 +N2(s)Ω

α
2 + L3(s)Bα). (3.16)

On the other hand, we have

Bβ =
1√

2(ξα
2 )2 − (ξα

1 )2
√
N2

1 (s) +N2
2 (s) +N2

3 (s)
[(−ξα

2N3(s) + ξα
2N2(s))Ω

α
1

+(−ξα
2N3(s) + ξα

2N1(s))Ω
α
2 + (ξα

1N2 − ξα
2N1(s))Bα].

(3.17)

Differentiating (3.12) with respect to s in order to calculate the torsion of the curve β, we

obtain

β̈ =
1√
2
[(ξα

2 ξ
α
1 + ξ̇α

1 )Ωα
1 + ((ξα

2 )2 − ξ̇α
2 )Ωα

2 + (−ξ̇α
2 + ξα

2 − (ξα
1 )2)Bα],

and similarly
...
β =

1√
2
[(2ξ̇α

2 ξ
α
1 + ξα

2 ξ̇
α
1 − ξ̈α

1 − ξα
2 ξ

α
1 + (ξα

1 )3)Ωα
1

+(3ξα
2 ξ̇

α
2 − ξ̈α

2 − (ξα
2 )2 − (ξα

1 )2ξα
2 )Ωα

2

+((ξα
1 )2ξα

2 − (ξα
2 )3 + ξα

2 ξ̇
α
2 − ξ̈α

2 + ξ̇α
2 − 3ξα

1 ξ̇
α
1 )Bα].

The torsion of the curve β is

τβ =
2(ξα

2 )2 − (ξα
1 )2

4
√

2
{[P3(s)((ξ

α
2 )2 − ξ̇α

2 ) − P2(s)(−ξ̇α
2 + ξα

2 − (ξα
1 )2)]ξα

1

+[P3(s)(ξ
α
2 ξ

α
1 − ξ̇α

1 ) − P1(s)(−ξ̇α
2 + ξα

2 − (ξα
1 )2)]ξα

2

+[P2(s)(ξ
α
2 ξ

α
1 − ξ̇α

1 ) − P1(s)((ξ
α
2 )2 − ξ̇α

2 )]ξα
3 },
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where

P1(s) = 2ξ̇α
2 ξ

α
1 + ξα

2 ξ̇
α
1 − ξ̈α

1 − ξα
1 ξ̇

α
1 + ξα

1 ξ
α
2 + (ξα

1 )3,

P2(s) = 3ξ̇α
2 ξ

α
2 − ξ̈α

2 − (ξα
2 )2 − (ξα

1 )2ξα
2 ,

P3(s) = (ξα
1 )2ξα

2 − (ξα
2 )3 + ξα

2 ξ̇
α
2 − ξ̈α

2 + ξ̇α
2 − 3ξ̇α

1 ξ
α
1 .

3.4 Ω1Ω2B−Smarandache Curves

Definition 3.4 Let α = α(s) be a unit speed regular curve in E3
1 and {Ωα

1 ,Ω
α
2 , Bα} be its

moving Bishop frame. Ωα
1 Ωα

2B−Smarandache curves are defined by

β(s∗) =
1√
3
(Ωα

1 + Ωα
2 +Bα). (3.18)

Now we can investigate Bishop invariants of Ωα
1 Ωα

2B−Smarandache curves of the curve

α = α(s). Differentiating (3.18) with respect to s, we have

β̇ =
dβ

ds
.
ds∗

ds
=

1√
3
(−ξα

1 Ωα
1 − ξα

2 Ωα
2 + (ξα

1 − εα
2 )Bα), (3.19)

and

Tβ.
ds∗

ds
=

1√
3
(−ξα

1 Ωα
1 − ξα

2 Ωα
2 + (ξα

1 − ξα
2 )Bα),

where
ds∗

ds
=

√
(ξα

1 − ξα
2 )2 + (ξα

2 )2 − (ξα
1 )2

3
. (3.20)

The tangent vector of the curve β is found as follows

Tβ =
1√

(ξα
1 − ξα

2 )2 + (ξα
2 )2 − (ξα

1 )2
(−ξα

1 Ωα
1 − ξα

2 Ωα
2 + (ξα

1 − ξα
2 )Bα). (3.21)

Differentiating (3.21) with respect to s, we find

dTβ

ds∗
.
ds∗

ds
= [−Q(s)ξ̇α

1 −Q(s)(ξα
1 )2 +Q(s)ξα

1 ξ
α
2 −Q′(s)ξα

1 ]Ωα
1

+[−Q(s)ξ̇α
2 −Q(s)ξα

1 ξ
α
2 +Q(s)(ξα

2 )2 −Q′(s)ξα
2 ]Ωα

2

+[Q(s)(ξα
1 − ξα

2 )′-Q(s)(ξα
1 )2+Q′(s)(ξα

1 − ξα
2 )]Bα,

(3.22)

where

Q(s) =
1√

(ξα
1 − ξα

2 )2 + (ξα
2 )2 − (ξα

1 )2
.

Substituting (3.20) into (3.22) by using (3.23) gives

T ′
β =

√
3

K(s)
(M1(s)Ω

α
1 +M2(s)Ω

α
2 +M3(s)Bα),
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where

R1(s) = −Q(s)ξ̇α
1 −Q(s)(ξα

1 )2 +Q(s)ξα
1 ξ

α
2 −Q′(s)ξα

1 ,

R2(s) = −Q(s)ξ̇α
2 −Q(s)ξα

1 ξ
α
2 +Q(s)(ξα

2 )2 −Q′(s)ξα
2 , (3.23)

R3(s) = Q(s)(ξα
1 − ξα

2 )′ −Q(s)(ξα
1 )2 +Q′(s)(ξα

1 − ξα
2 ).

Then the first curvature and the principal normal vector field of β are, respectively, obtained

as follows

κβ =
∥∥∥T ′

β

∥∥∥ =

√
3

K(s)

√
−R2

1(s) +R2
2(s) +R2

3(s),

and

Bβ =
−1

K(s)
√
−R2

1(s) +R2
2(s) +R2

3(s)
[(M2(ξ

α
1 − ξα

2 ) +M3ξ
α
2 )Ωα

1

+(M1(ξ
α
1 − ξα

2 ) +M3ξ
α
2 )Ωα

2 + (ξα
2M1(s) − ξα

1M2(s))Bα].

(3.24)

Differentiating (3.19) with respect to s in order to calculate the torsion of the curve β, we

obtain

β̈ =
1√
3
[(−ξ̇α

1 − (ξα
1 )2 + ξα

1 ξ
α
2 )Ωα

1

+(−ξ̇α
2 + (ξα

2 )2 − ξα
1 ξ

α
2 + (ξα

2 )2)Ωα
2 + (ξ̇α

1 − ξ̇α
2 − (ξα

1 )2)Bα],

and similarly
...
β =

1√
3
[(−ξ̈α

1 − 2ξα
1 ξ̇

α
1 + ξ̇α

1 ξ
α
2 + ξα

1 ξ̇
α
2 )Ωα

1

+(−ξ̈α
2 + 4ξα

2 ξ̇
α
2 − ξ̇α

1 ξ
α
2 − 2ξα

1 ξ
α
2 )Ωα

2

+(ξα
2 ξ̇

α
2 + ξα

1 (ξα
2 )2 − (ξα

1 )2 − (ξα
1 )3 + (ξα

1 )2ξα
2 )Bα].

The torsion of the curve β is

τβ =
1

9

K2(s)

−M2
1 (s) +M2

2 (s) +M2
3 (s)

{[Q3(s)(−ξ̇α
2 + 2(ξα

2 )2 − ξα
1 ξ

α
2 )

−Q2(s)(ξ
α
1 − ξ̇α

2 − ξα
1 ξ

α
2 )]ξα

1 + [Q3(s)(−ξ̇α
1 − (ξα

1 )2 + ξα
1 ξ

α
2 )

−Q1(s)(−ξ̇α
2 + 2(ξα

2 )2 − ξα
1 ξ

α
2 )]ξα

2 − [Q2(s)(−ξα
1 − (ξα

1 )2 + ξα
1 ξ

α
2 )

−Q1(s)(−ξα
2 + 2(ξα

2 )2 − ξα
1 ξ

α
2 )](ξα

1 − ξα
2 )},

where

Q1(s) = −ξ̇α
1 − (ξα

1 )2 + ξα
1 ξ

α
2 ,

Q2(s) = −ξ̇α
1 ξ

α
2 + 2ξα

2 ξ̇
α
2 − ξ̈α

2 ,

Q3(s) = ξα
1 (ξα

2 )2 − (ξα
1 )2 − (ξα

1 )3 + (ξα
1 )2ξα

2 + ξα
2 ξ̇

α
2 .

3.5 Example

Example 3.1 Next, let us consider the following unit speed curve w = w(s) in E3
1 as follows

w(s) = (s,
√

2 ln(sech(s)),
√

2 arctan(sinh(s))). (3.25)
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It is rendered in Figure 1, as follows

Figure 1

The curvature function and Serret-Frenet frame of the curve w(s) is expressed as

T = (1,−
√

2 tanh(s),
√

2 sec h(s)),

N = (0,− sech(s),− tanh(s)),

B = (
√

2,− tanh(s), sec h(s)),

(3.26)

and

κ =
√

2 sec h(s), θ =
√

2
s∫
0

sec h(s)ds =
√

2 arctan(sinh(s)). (3.27)

Figure 2 Ω1Ω2-Smarandache curve Figure 3 Ω1B-Smarandache curve

Also the Bishop frame is computed as

Ω1 = (− sinh θ,−
√

2 sinh θ tanh(s) − cosh θ sec h(s),

−
√

2 sinh θ sech(s) − cosh θ tanh(s)),
(3.28)

Ω2 = (cosh θ,−
√

2 cosh θ tanh(s) + sinh θ sec h(s),
√

2 cosh θ sech(s) − sinh θ tanh(s)),
(3.29)
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B = (
√

2,− tanh(s), sec h(s)). (3.30)

Let us see the graphs which belong to all versions of Smarandache curves according to the

Bishop frame in E3
1 .

The parametrizations and plottings of Ω1Ω2,Ω1B,Ω2B and Ω1Ω2B− Smarandache curves

are, respectively, given in Figures 2-5.

Figure 4 Ω2B-Smarandache curve Figure 5 Ω1Ω2B-Smarandache curve

§4. Smarandache Breadth Curves According to the Bishop Frame of Type-2 in E3
1

A regular curve more than 2 breadths in Minkowski 3-space is called a Smarandache breadth

curve.

Let α = α(s) be a Smarandache breadth curve, and also suppose that α = α(s) is a simple

closed curve in E3
1 . This curve will be denoted by (C). The normal plane at every point P on

the curve meets the curve at a single point Q other than P. We call the point Q as the opposite

point of P

We consider a curve α∗ = α∗(s∗) ,in the class Γ, which has parallel tangents ζ and ζ∗ at

opposite directions at the opposite points α and α∗ of the curve. A simple closed curve having

parallel tangents in opposite directions at opposite points can be represented with respect to

Bishop frame by the equation

α∗(s∗) = α(s) + λΩ1 + µΩ2 + ηB, (4.1)

where λ(s), µ(s) and η(s) are arbitrary functions, α and α∗ are opposite points.

Differentiating both sides of (4.1) and considering Bishop equations, we have

dα∗

ds
= Ω∗

1

ds∗

ds
= (

dλ

ds
− ηξ1 + 1)Ω1 + (

dµ

ds
− ηξ2)Ω2

+(
dη

ds
+ λξ1 − µξ2)B.

(4.2)
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Since Ω∗
1 = −Ω1, rewriting (4.2) we obtain respectively

dλ

ds
= ηξ1 − 1 − ds∗

ds
,

dµ

ds
= ηξ2,

dη

ds
= −λξ1 + µξ2. (4.3)

If we call θ as the angle between the tangent of the curve (C) at the point α(s) with a

given direction and consider
dθ

ds
= τ, (4.3) turns into the following form:

dλ

dθ
= η

ξ1
τ

− 1

τ
(1 +

ds∗

ds
),

dµ

dθ
= η

ξ2
τ
,

dη

dθ
= −λ

τ
ξ1 +

µ

τ
ξ2, (4.4)

where
ds∗

ds
=
ds∗

dθ
.
dθ

ds
=

1

τ

ds∗

dθ
, 1 +

ds∗

ds
= f(θ), τ 6= 0.

Using system (4.4), we have the following vectorial differential equation with respect to λ

as follows
d3λ

dθ3
+ { τ2

ξ21ξ2
f(θ) − (

ξ1ξ2
τ3

(
ξ1
τ

)′)
τ

ξ1
}d

2λ

dθ2
+ {(ξ1

τ
)2

+[
ξ1
τ2

(
ξ1
τ

)′]′ (1 − λ) (
τ

ξ1
)′ − [

ξ1ξ2
τ3

(
ξ1
τ

)]′(
τ

ξ1
)

−[
ξ1ξ2
τ3

(
ξ1
τ

)′] − [
ξ22
τ3

(
ξ1
τ

)′] + [
1

ξ1
(
τ

ξ2
)(
τ

ξ2
)′f(θ)]}dλ

dθ

+{[ξ1ξ2
τ3

(
ξ1
τ

)′]′(
τ2

ξ1ξ2
)(
τ

ξ1
)′}(dλ

dθ
)2 + { 1

ξ1
+
τ

ξ1
}dλ
dθ

d2λ

dθ2

+{(ξ1
τ

)′2 + [
ξ1ξ2
τ3

(
ξ1
τ

)′]
1

ξ1
f(θ) + (

ξ1
ξ2

− 1)
1

ξ1
f(θ)}λ

+{[(ξ1
τ

)2 +
1

ξ1
f(θ)][

ξ1ξ2
τ3

(
ξ1
τ

)′]′[
τ

ξ2
(

1

ξ1
)′f(θ) +

τ

ξ1ξ2
f ′(θ) +

ξ1
ξ2

]}

+{ξ1ξ2
τ3

(
ξ1
τ

)′[(
1

ξ1
)′f(θ) − (

1

ξ1
)f ′(θ) +

ξ2
ξ1

1

τ
f(θ)]

+(
1

τ
)′f(θ) +

1

τ
f ′(θ)} = 0.

(4.5)

The equation (4.5) is a characterization for α∗. If the distance between opposite points of

(C) and (C∗) is constant, then we can write that

‖α∗ − α‖ = −λ2 + µ2 + η2 = l2 = const., (4.6)

hence, we write

−λdλ
dθ

+ µ
dµ

dθ
+ η

dη

dθ
= 0. (4.7)

Considering the system (4.4) together with (4.7), we obtain

λf(θ) = η(
ξ1
τ

− τηξ2 − ξ1). (4.8)

From system (4.4) we have

η =
τ

ξ1

dλ

dθ
+

1

ξ1
f(θ). (4.9)
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Substituting (4.9) into (4.8) gives

λf(θ) = (τ
dλ

dθ
+ f(θ))(

ξ1
τ

− τηξ2 − ξ1)

or

τ
dλ

dθ
+ f(θ) =

λf(θ)

G(θ)
, (4.10)

where G(θ) =
ξ1
τ

− τηξ2 − ξ1, τ 6= 0.

Thus we find

λ =
θ∫
0

f(θ)

τ
( λ

G(λ) − 1)dθ, (4.11)

and also from (4.4)2, (4.9) and (4.4)1 we obtain

µ =
θ∫
0

(
dλ

dθ
+
f(θ)

τ
)ξ2dθ. (4.12)

and

η =
θ∫
0

[
τ

ξ1
(
dλ

dθ
+
f(θ)

τ2
)]dθ. (4.13)
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Abstract: The concept of locally dually flat Finsler metrics originate from information

geometry. As we know, (α, β) - metrics defined by a Riemannian metric α and a 1-form β,

represent an important class of Finsler metrics .In the year 2014, S. K. Narasimhamurthy

,A.R. Kavyashree and Y. K. Mallikarjun obtained characterization of locally first approxi-

mate Matsumoto metric [1].In continuation of the paper we study and characterize locally

dually flat for a special Finsler (α, β) metric F = α+β + β2

α
+ β3

α2 with isotropic S-curvature,

which is not Riemannian.

Key Words: Finsler metric, Riemannian metric;one form metric, S-curvature, locally

dually flat metric, locally Minkowskian metric.

AMS(2010): 53C60, 53B40

§1. Introduction

The notion of dually flat metric was first introduced by S. I. Amari and H. Nagaoka, while

studying the information geometry on Riemannian spaces [2]. Later, Z. Shen extended the

notion of dually flatness to Finsler metrics [7]. Dually flat Finsler metrics form a special

important class of Finsler metrics in Finsler information geometry, which play a very important

role in studying flat Finsler information structures ([4], [5], [6], [7], and [11]). In 2009, the

authors of [4] classified the locally dual flat Randers metrics with almost isotropic flag curvature.

Recently, Q. Xia worked on the dual flatness of Finsler metrics of isotropic flag curvature as

well as scalar flag curvature ([10], [11]). Also, Q. Xia studied and gave a characterization of

locally dually flat (α, β)-metrics on an n-dimensional manifold M (n ≥ 3) [9]. Further in 2014,

the authors of [1] discuss characterization of locally dually flat first approximate Matsumoto

metric.

The first example of non-Riemannian dually flat metrics is the Funk metric given by ([4],

1Received June 13, 2016, Accepted November 8, 2016.
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[7]):

F =

√
(1 − |x|2|y|2) + 〈x, y〉2

1 − |x|2 ± 〈x, y〉
1 − |x|2

This metric is defined on the unit ball Bn(µ) ⊆ Rn and is a Randers metric with constant

flag curvature K = −1
4 . This is the only known example of locally dually flat metric with

non-zero constant flag curvature up to now.

In this paper, we study and characterize locally dually flat Finsler metric with isotropic

S-curvature, which is not Riemannian.

§2. Preliminaries

Let M be an n-dimensional smooth manifold. We denote by TM the tangent bundle of M and

by (x, y) = (xi, yj) the local coordinates on the tangent bundle TM. A Finsler manifold (M,

F) is a smooth manifold equipped with a function F : TM → [0,∞), which has the following

properties:

• Regularity: F is smooth in TM \ {0};
• Positive homogeneity: F (x, λy) = λF (x, y), ∀λ > 0;

• Strong convexity: the Hessian matrix of F 2, gij(x, y =
1

2

∂2F 2(x, y)

∂xi∂yj
is positive definite

on TM \{0}.

We call F and the tensor gij the Finsler metric and the fundamental tensor of M, respec-

tively.

For a Finsler metric F = F(x, y), its geodesic curves are characterized by the system of

differential equations c̈i + 2Gi(ċ) = 0, where the local functions Gi = Gi(x, y) are called the

spray coefficients and given by

Gi =
gij

4

{
[F 2]xkylyk − [F 2]xl

}
, ∀y ∈ TxM.

Definition 2.1 A Finsler metric F = F(x,y) on a manifold M is said to be locally dually flat

if at any point there is a standard coordinate system (xi, yi) in TM which satisfies

[F 2]xkylyk = 2[F 2]xl

In this case, the system of coordinates (xi) is called an adapted local coordinate system.

It is easy to see that every locally Minkowskian metric is locally dually flat. But the converse

is not generally true [4].

Definition 2.2 A Finsler metric is said to be locally projectively flat if at any point there is a

local coordinate system in which the geodesics are straight lines as point sets. It is known that

a Finsler metric F(x, y) on an open domain U ⊂ Rn is locally projectively flat if and only if its
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geodesic coefficients Gi are of the form

Gi = Pyi

where P : TU = UXRn → R is positively homogeneous of degree one, P (x, λy) = λP (x, y), ∀λ >
0. We call P(x, y) the projective factor of F(x, y).

Lemma 2.1([4]) Let F = F(x, y) be a Finsler metric on an open subset U ⊂ Rn. Then F is

locally flat and projectively flat on U if and only if Fxk = CFFyk , where C is a constant.

The S-curvature is a scalar function on TM, which was introduced by Z. Shen to study

volume comparison in Riemann-Finsler geometry [3]. The S-curvature measures the average

rate of change of (TxM,Fx = F |TxM) in the direction y ∈ TxM. It is known that S = 0 for

Berwald metrics.

Definition 2.3 A Finsler metric F on an n-dimensional manifold M is said to have isotropic

S-curvature if S = (n+ 1)c(x)F, for some scalar function c on M.

For a Finsler metric F on an n-dimensional manifold M, the Busemann-Hausdorff volume

form dVF = σF (x)dx1 · · · dxn is defined by

σF =
V olBn(1)

V ol(yi ∈ Rn|F (x, yi ∂
∂xi |x < 1)

Here Vol denotes the Euclidean volumes and Bn(1) denotes the unit ball in Rn . Then the

S-curvature is defined by

S(y) =
∂Gi

∂yi
(x, y) − yi ∂(InσF )

∂xi

where

y = yi ∂(InσF )

(∂xi)
|x ∈ TxM [8].

For an (α, β)-metric, one can write F = αφ(s), where s = β
α and φ = φ(s) is a C∞ function

on the interval (¬b0, b0) with certain regularity properties, α =
√

(aijyiyj) is a Riemannian

metric and β = bi(x)y
i is a 1-form on M.

We further denote

bi|jθ
j = dbi − bjθ

j
i ,

where θi = dxi and θi
j = Γj

ikdx
k denotes the coefficients of the Levi- Civita connection form of

α.

Let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i).

Clearly, β is closed if and only if sij = 0 . An (α, β)-metric is said to be trivial if rij =

sij = 0.We put

ri0 = rijy
j , r00 = rijy

iyj , rj = rijb
i,

si0 = sijy
j , sj = sijb

i, s0 = sjb
i.
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By direct computation, we can obtain a formula for the mean Cartan torsion of an (α, β)-

metric as follow:

Ii = ¬φ(φ − sφ
′

)

2∆φα2
(αbi − syi).

Clearly, an (α, β) -metric F = αφ(s), s = β
α is Riemannian if and only if φ = 0. Hence, we

further we assume that φ 6= 0.

Theorem 2.2([9]) Let F = αφ(s), s = β
α be an (α, β)-metric on an n-dimensional manifold

Mn(n ≥ 3), where α =
√

(aijyiyj)is a Riemannian metric and β = bi(x)y
i 6= 0. is an 1-form

on M. Suppose that F is not Riemannian and φ
′

(s) 6= 0. Then F is locally dually flat on M if

and only if (α, β) and φ = φ(s) satisfy

(1) sl0 =
1

3
(βθl − θbl);

(2) r00 =
2

3
θβ +

[
τ +

2

3

(
b2τ − θlb

l
)]
α2 +

1

3
(3k2 − 2 − 3k3b

2)τβ2;

(3) Gl
α =

1

3
[2θ + (3k1 − 2)τβ]yl +

1

3
(θlτbl)α2 +

1

2
k3τβ

2b1;

(4) τ [s(k2 − k3s
2)(φφ′ − sφ′2 − sφφ′′) − (φ′2 + φφ′′) + k1φ(φ − sφ′] = 0.

where τ = τ(x) is a scalar function, θ = θi(x)y
i is an 1-form on M, θl = almθm

k1 = Π(0), k2 =
Π

′

(0)

Q(0)
, k3 =

1

6Q2(0)
[3Q

′′

(0)Π′(0) − 6Π2(0) −Q(0)Π′′′(0)].

and

Q =
φ

′

(φ− sφ′)
, Π =

(φ
′2 + φφ′′)

(φ(φ − sφ′))
.

In [4], Cheng-Shen studied the class of (α, β)-metrics of non-Randers type φ 6= t1
√

1 + t2s2+

t3s. with isotropic S-curvature and obtained the following.

Theorem 2.3([3]) Let F = αφ(s), s = β
α be a non-Riemannian (α, β)-metric on a manifold

and b = ‖|βx‖|α. Suppose that φ 6= t1
√

1 + t2s2 + t3s for any constants t1 > 0, t2 and t3. Then

F is of isotropic S-curvature S = (n+ 1)cF if and only if one of the following assertions holds

(1) β Satisfies

rij = ε(b2aij − bibj), sj = 0, (2.1)

where ε = ε(x) is a scalar function, and c = c(x) satisfies

Φ = −2(n+ 1)k
φ∆2

(b2 − s2)
, (2.2)

where k is a real constant. In this case, S = (n+ 1)cF with c = kε;

(2) β satisfies

rij = 0, sij = 0. (2.3)

In this case, S = 0, regardless of the choice of a particular φ.
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§3. Characterization of Locally Dually Flat Finsler (α, β) Metric

Theorem 3.1 Let F = α+ β + β2

α + β3

α2 be a special Finsler (α, β) metric on a manifold M of

dimension n ≥ 3.Then the necessary and sufficient conditions for F to be locally dually flat on

M are the following:

(1) sl0 =
1

3
(βθl − θbl);

(2) r00 =
2

3
θβ +

[
τ +

2

3

(
b2τ − θlb

l
)]
α2 +

1

3
(25 − 30b2)τβ2;

(3) Gl
α =

1

3
[2θ + 25τβ]yl +

1

3
(θlτbl)α2 + 5τβ2bl;

where τ = τ(x) is a scalar function, θ = θky
k is an 1-form on M .

Proof For a Finsler metric F = α+ β +
β2

α
+
β3

α2
we obtain k1 = 3, k2 = 9, k3 = 10, and

φ = 1 + s+ s2 + s3, φ
′

= 1 + 2s+ 3s2, φ
′′

= 2 + 6s, φ
′′′

= 6,

Π =
3 + 12s+ 18s2 + 20s3 + 13s4

1 + s− 2s3 − 3s4 − 3s5 − 2s6
,

Π(0) = 3, Π
′

(0) = 9, Π
′′

(0) = 18, Π
′′′

(0) = 102.

Q =
1 + 2s+ 3s2

1 − s2 − 2s3
, Q

′

=
2 + 8s+ 8s2 + 8s3 + 6s4

(−1 + s2 + 2s3)2
,

Q
′′

=
−8(1 + 8s+ 9s2 + 15s3 + 9s4 + 6s5 + 3s6)

(−1 + s2 + 2s3)3
,

Q(0) = 1, Q
′

(0) = 2, Q
′′

(0) = 8, Q
′′′

(0) = 24.

By using the above values in Lemma 2.1, we get

[s(k2 − k3s
2)(φφ′ − sφ′

2 − sφφ′′) − (φ′
2

+ φφ′′) + k1φ(φ − sφ′)] = 0 and τ = 0.

Then, finally, by substituting k1, k2 and k3 in Lemma 2.1, we infer the claim.

Now, let φ = φ(s) be a positive C∞ function on (−b0, b0). For a number b ∈ [0, b0], let

Φ = −(Q− sQ′)(n∆ + 1 + sQ) − (b2 − s2)(1 + sQ)Q′′, (3.1)

where ∆ = 1 + sQ+ (b2 − s2)Q′. This implies that

∆ =
φ[1 − 3s2 − 8s3 + 2b2(6 + 2s)]

(−1 + s2 + 2s3)2
.

Then, the equation (3.1) can be written as follows:

Φ = −(Q− sQ′)(n+ 1)∆ + (b2 − s2) {(Q− sQ′)Q′ − (1 + sQ)Q′′} .

By using Theorem 2.3, now we will consider a locally dually flat (α, β)-metric with isotropic
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S-curvature.

Theorem 3.2 Let F = α+ β + β2

α + β3

α2 be a locally dually flat non-Randers type (α, β)-metric

on a manifold M of dimension n ≥ 3. Suppose that F is of isotropic S curvature S = (n+1)cF,

where c = c(x) a scalar function is on M. Then F is a locally projectively flat in adapted

coordinate system and Gi = 0.

Proof Let Gi = Gi(x, y) and G
i

α = G
i

α(x, y) denote the coefficients of F and α respectively,

in the same coordinate system. By definition, we have

Gi = Gi
α + Pyi +Qi, (3.2)

where

P = α−1Θ − 2Qαso + r00, (3.3)

Qi = αQsi
o + ψ − 2Qαs0 + r00b

i, (3.4)

Θ =
φφ

′ − s(φφ
′′

+ φ
′

φ
′

)

2φ((φ− sφ′) + (b2 − s2)φ′′)
=

−1 + s+ 12s2 + 20s3 + 21s4 + 3s5

2φ[−1 + 2s2 + 3s3 − 2b2(1 + 2s)]

ψ =
1

2

φ′′

((φ− sφ′) + (b2 − s2)φ′′)
=

1 + 3s

1 − 3s2 − 8s3 + b2(2 + 6s)

First, we suppose that case (i) of Theorem 2.3 holds. It is remarkable that, for a special

Finsler (α, β) metric, we have

∆ =
φ[1 − 3s2 − 8s3 + 2b2(6 + 2s)]

(−1 + s2 + 2s3)2

It follows that (¬1 + s2 + 2s3)2∆ is a polynomial in s of degree 3. On the other hand we

have

φ∆2 =
φ2[1 − 3s2 − 8s3 + 2b2(6 + 2s)]2

(−1 + s2 + 2s3)4
. (3.5)

Hence, if case (2) of Theorem (2.3) holds, then substituting (3.5) we obtain that

(b2 − s2)(−1 + s2 + 2s3)4Φ = −2(n+ 1)kφ2[1 − 3s2 − 8s3 + 2b2(6 + 2s)]2. (3.6)

It follows that (b2 − s2)(−1 + s2 + 2s3)4Φ is not a polynomial in s (if k = 0, then by

considering the Cartan torsion equation, we get a contradiction). Then, we put

φ∆2 =
∆

(−1 + s2 + 2s3)4
,

where

∆ = φ2[1 − 3s2 − 8s3 + 2b2(6 + 2s)]
2
.

By assumption, F is a non-Randers type metric. Thus ∆ is not a polynomial in s, and then
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(b2 − s2)(−1 + s2 + 2s3)4Φ is not a polynomial in s. Now, let us consider another form of Φ

Φ = −(Q− sQ′)(n+ 1)∆ + (b2 − s2) {(Q− sQ′)Q′ − (1 + sQ)Q′′} ,

where

Q− sQ
′

=
(1 − 6s2 − 12s3 − 15s4 − 12s5)

(−1 + s2 + 2s3)2
.

Then,

Φ =
−1

(−1 + s2 + 2s3)4
{Φ[1 − 15s2 − 38s3 − 81s4 − 108s5 − 33s6 − 6s7

+n(−1 − 9s2 − 20s3 + 3s4 + 72s5 + 141s6 + 156s7 + 96s8)

+2b2(4(1 + 3s+ 9s2 + 15s3 + 9s4 + 6s5 + 3s6)

−n(−1 − 3s+ 6s2 + 30s3 + 51s4 + 57s5 + 36s6))]}. (3.7)

From equations (3.6) and (3.7), the relation (b2 − s2)(−1 + s2 + 2s3)4Φ is a polynomial in

s and b of degree 8 and 4 respectively. The coefficient of s8 is not equal to zero. Hence it is

impossible thatΦ = 0. Therefore, we can conclude that equation (2.2) does not hold. So, the

case (ii) of Theorem 2.3 holds. In this case, we have

r00 = 0, sj = 0.

In Theorem 3.1(2), by taking r00 = 0, we obtain (3.8)

[
τ +

2

3

(
b2τ − θlb

l
)]
α2 =

1

3
β
[
−2Θ − (25 + 30b2)βτ

]
. (3.8)

Since α2 is an irreducible polynomial of yi, equation (3.8) reduces to the following

τ +
2

3
(b2τ − bmθ

m) = 0, (3.9)

2

3
θ +

1

3
(25 + 30b2)βτ = 0, (3.10)

where

θ = −1

2
(25 + 30b2)βτ. (3.11)

Then, Theorem 3.1(1) yields

s0 = − 1

3(b2τ − βbmθm)

This implies

(b2τ − βbmθ
m) = 0

From (3.8), (3.9) and (3.11), we obtain

θ = −1

2
(25 + 30b2)βτ. (3.12)



Characterization of Locally Dually Flat Special Finsler (α, β) - Metrics 51

From equations (3.9) and (3.12), it follows that τ = 0 and substituting τ = 0 in equation

(3.12), we get θ = 0. Thus finally (1), (2) and (3) reduce to the following

sij = 0, Gl
α = 0, r00 = 0.

Since s0 = r00 = 0, then equations (3.3) and (3.4) reduce to

P = 0 and Qi = 0.

Then the relation (3.2) becomes Gl
α = 0, which completes the proof. 2

Theorem 3.3 Let F = α+ β + β2

α + β3

α2 be a non-Riemannian metric on n-dimensional n ≥ 3

manifold M. Then F is locally dually flat with isotropic S-curvature. Moreover, S = (n+ 1)cF

if and only if the structure is locally Minkowskian.

Proof From Theorem 3.2 we have that F = α+β+
β2

α
+
β3

α2
is dually flat and projectively

flat in any adapted coordinate system. By Lemma 2.1, we infer

Fxk = CFFyk .

Hence the spray coefficients Gi = Pyi are given by P = 1
2CF . Since Gi = 0, then P = 0,

and hence C = 0. This implies that Fxk and then F is a locally Minkowskian metric in the

adapted coordinate system. 2
§4. Conclusions

The authors S. I. Amari and H. Nagaoka ([2]) introduced the notion of dually flat Riemannian

metrics, while studying information geometry on Riemannian manifolds. Information geometry

emerged from investigating the geometrical structure of a family of probability distributions and

was successfully applied to various areas, including statistical inference, control system theo-

rem and multi-terminal information theorem. As known, Finsler geometry is just Riemannian

geometry without the quadratic restriction. Therefore, it is natural to extend the construction

of locally dually flat metrics to Finsler geometry. In Finsler geometry, Z.Shen [7] extended the

notion of locally dually flat metric in Finsler information geometry, which plays a very impor-

tant role in studying many applications in Finsler information structures. In this article, we

study and characterize the locally dually flat a special (α, β) metric F = α+ β + β2

α + β3

α2 with

isotropic S-curvature which is not Riemannian.
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§1. Introduction

Gröbner bases and Gröbner-Shirshov bases were invented independently by A.I. Shirshov for

ideals of free (commutative, anti-commutative) non-associative algebras [33, 35] (see also [9,

10]) , free Lie algebras [34, 35] and implicitly free associative algebras [34, 35] (see also [3, 4]),

by H. Hironaka [30] for ideals of the power series algebras (both formal and convergent), and

by B. Buchberger [20] for ideals of the polynomial algebras.

Gröbner bases and Gröbner-Shirshov bases theories have been proved to be very useful in

different branches of mathematics, including commutative algebra and combinatorial algebra,

see, for example, the books [1, 19, 21, 22, 26, 28], the papers [2, 3, 4], and the surveys [5, 6, 14,

16, 17, 18].

Up to now, different versions of Composition-Diamond lemma are known for the following

classes of algebras apart those mentioned above: Lie p-algebras [32], associative conformal

algebras [15], modules [25, 31] (see also [24]), right-symmetric algebras [8], dialgebras [11],

associative algebras with multiple operators [13], matabelian Lie algebras [23], Rota-Baxter

algebras [7], semirings [12], integro-differential algebras [29], and so on.

Let k be a field, A a non-associative algebra over k. We call A a left-commutative al-

gebra over k, if A satisfies the following identity: x(yz) = y(xz), x, y, z ∈ A. The variety

of Novikov algebras and the variety of dual Leibniz algebras are subvarieties of the variety of

left-commutative algebras. Free left-commutative algebras were firstly studied by A. Dzhu-

1Supported by the NNSF of China No.11401246, 11426112 and 11501237, the NSF of Guangdong Province
No.2014A030310087, 2014A030310119 and 2016A030310099, the Foundation for Distinguished Young Teachers
in Higher Education of Guangdong No.YQ2015155, and the Research Fund for the Doctoral Program of Huizhou
University No.C513.0210, C513.0209.
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madil’daev and C. Löfwall [27]. They constructed a monomial basis for free left-commutative

algebras. In this paper, we establish Gröbner-Shirshov bases theory for the right ideals of left-

commutative algebras. Using this theory, we prove the decidability of the membership problems

for the right ideals of free left-commutative algebras.

§2. Free Left-Commutative Algebras

Let X be a well ordered set. Each letter xi ∈ X is called a non-associative word of degree 1.

Suppose that u is a non-associative word of degree m and v is a non-associative word of degree

n. Then (uv) is called a non-associative word of degree m + n. Denote by d(u) the degree of

the non-associative word u.

Let u, v ∈ X∗∗ be non-associative words. Then we say that u > v if d(u) > d(v). If

d(u) = d(v) ≥ 2 and u = (u1u2), v = (v1v2), then we say that u > v if either u2 > v2 or

u2 = v2 and u1 > v1. This ordering is called non-associative degree inverse lexicographic

ordering. Unless otherwise stated, the non-associative degree inverse lexicographic ordering is

used throughout this paper.

Definition 2.1 Each letter xi ∈ X is called a regular word of degree 1. Suppose that u = (vw)

is a non-associative word of degree m,m > 1. Then u = (vw) is called a regular word of degree

m if it satisfies the following conditions:

(S1) both v and w are regular words, and

(S2) if w = (w1w2), then v ≥ w1.

Let k be a field, N(X) the set of all regular words on X , kN(X) the k-linear space spanned

by N(X). Let u, v ∈ N(X). Then we define a product u · v on kN(X) by the following way: if

v = xi ∈ X , then u · v := (uxi); if v = (v1v2) and u ≥ v1, then u · v := (u(v1v2)); if v = (v1v2)

and u < v1, then u · v := (v1(u · v2)).

Theorem 2.2([27]) Let LC(X) be the free left-commutative algebra generated by X. Then the

algebra kN(X) is isomorphic to LC(X).

According to Theorem 2.2, each non-zero element f in LC(X) can be uniquely presented

as

f = α1u1 + α2u2 + . . .+ αmum,

where αi ∈ k, ui ∈ N(X) for all i, α1 6= 0, u1 > u2 > . . . > um. Here, the regular word u1 is

called the leading term of f , denoted by f̄ and α1 the leading coefficient of f , denoted by αf̄ .

If αf̄ = 1, then f is called a monic polynomial.

For every f ∈ LC(X) denote by Lf the operator of left multiplication by f acting on

LC(X), i.e., Lf (g) = fg for all g ∈ LC(X). In particular, if f1, f2, · · · , fm, g ∈ LC(X), then

Lfm
. . . Lf2Lf1(g) = (fm(· · · (f2(f1g)) · · · )).
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Lemma 2.3([27]) Let u ∈ N(X) be a regular word. Then u can be uniquely presented as

u = Lun
. . . Lu1(xi),

where xi ∈ X, un ≥ . . . ≥ u1, uj ∈ N(X), 1 ≤ j ≤ n, n ≥ 0.

Lemma 2.4 Let u, v ∈ N(X) be regular words and v = Lvn
. . . Lv1(xi), where n ≥ 1, xi ∈ X.

Then

u · v = Lvn
· · ·Lvt

LuLvt−1 · · ·Lv1(xi),

where vn ≥ · · · ≥ vt > u ≥ vt−1 ≥ . . . ≥ v1.

Proof Let us use induction on n. If n = 1 and u ≥ v1, then u ·v = LuLv1(xi). If n = 1 and

u < v1, then u ·v = Lv1Lu(xi). Suppose that n > 1. If u ≥ vn, then u ·v = LuLvn
· · ·Lv1(xi). If

u < vn, then u ·v = vn(u ·Lvn−1 · · ·Lv1(xi)). By the inductive hypothesis, u ·Lvn−1 · · ·Lv1(xi) =

Lvn−1 · · ·Lvt
LuLvt−1 · · ·Lv1(xi), where vn−1 ≥ · · · ≥ vt > u ≥ vt−1 ≥ · · · ≥ v1. Therefore,

u · v = Lvn
· · ·Lvt

LuLvt−1 · · ·Lv1(xi),

where vn ≥ · · · ≥ vt > u ≥ vt−1 ≥ · · · ≥ v1. 2
Lemma 2.5([27]) If u, v, w ∈ N(X) and u > v, then u · w > v · w,w · u > w · v.

From Lemma 2.5, it follows that

Corollary 2.6 If f, g ∈ LC(X), then (f · g) = (f · g).

§3. Composition-Diamond Lemma for Right Ideals of Free

Left-Commutative Algebras

Definition 3.1 Let S ⊂ LC(X) be a set of monic polynomials. Each polynomial s ∈ S is called

an S-word of s-length one. Suppose that (u)s is an S-word of s-length m and v is a regular

word of degree n. Then (u)s · v is an S-word of s-length m+ n.

Definition 3.2 Let S ⊂ LC(X) be a set of monic polynomials. Each polynomial s ∈ S is

called a normal S-word of s-length one. Suppose that (u)s is a normal S-word of s-length m

and xi ∈ X, vj ∈ N(X), 1 ≤ j ≤ n, 0 ≤ n. Then Lvn
· · ·Lvt

L(u)s
Lvt−1 · · ·Lv1(xi) is called a

normal S-word of s-length m + 1 +
∑

j d(vj) if vn ≥ · · · ≥ vt > (u)s ≥ vt−1 ≥ · · · ≥ v1. We

denote (u)s by [u]s if (u)s is a normal S-word.

Lemma 3.3 For each S-word (u)s, there exists a normal S-word [v]s such that (u)s = [v]s.

Proof Suppose that the s-length of (u)s is m. Let us use induction on m. If m = 1, then

(u)s = s and the lemma holds clearly. Suppose that (u)s = (v)s ·w, where w ∈ N(X) and (v)s

is an S-word with s-length less than m. By the induction hypothesis, these exists a normal

S-word [v′]s such that (v)s = [v′]s. If w = xi ∈ X , then the lemma holds clearly. Let us assume
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that w = Lwl
· · ·Lw1(xi), where xi ∈ X , wl ≥ · · · ≥ w1, wj ∈ N(X), 1 ≤ j ≤ l, 1 ≤ l. Then by

Lemma 2.4 we have

(u)s = (v)s · w = [v′]s · w = Lwl
· · ·Lwt

L[v′]sLwt−1 · · ·Lw1(xi),

where wl ≥ · · · ≥ wt > [v′]s ≥ wt−1 ≥ · · · ≥ w1. This completes our proof. 2
From Corollary 2.6, it follows that [u]s = [u]s.

Definition 3.4 Let f, g be monic polynomials in LC(X). If there exists a normal g-word [u]g

such that f̄ = [u]g, then the polynomial f − [u]g is called a composition of inclusion of f and g,

and denoted by (f, g)f̄ .

Let S be a given nonempty subset of LC(X). The composition of inclusion (f, g)f̄ is said

to be trivial modulo (S, f̄) if

(f, g)f̄ =
∑

i

αi[ui]si
,

where αi ∈ k, si ∈ S, [ui]si
are normal S-words and [ui]si

< f̄ . If this is the case, then we

write

(f, g)f̄ ≡ 0 mod(S, f̄ ).

In general, for any regular word w and f, g ∈ LC(X), we write

f ≡ g mod(S,w)

which means that f − g =
∑
αi[ui]si

, where αi ∈ k, si ∈ S and [ui]si
< w.

Definition 3.5 Let S ⊂ LC(X) be a nonempty set of monic polynomials and Idr(S) the right

ideal of LC(X), generated by S. Then the set S is called a Gröbner-Shirshov basis for Idr(S)

if any composition of inclusion in S is trivial modulo S.

Lemma 3.6 Let [u1]s1 , [u2]s2 be normal S-words. If S is a Gröbner-Shirshov basis for Idr(S)

and w = [u1]s1 = [u2]s2 , then

[u1]s1 ≡ [u2]s2 mod(S,w).

Proof If [u1]s1 = s1 or [u2]s2 = s2, then the lemma holds since S is a Gröbner-Shirshov

basis for Idr(S).

Suppose that

[u1]s1 = Lvl
· · ·Lvp

L[v]s1
Lvp−1 · · ·Lv1(xi),

[u2]s2 = Lwm
· · ·Lwq

L[w]s2
Lwq−1 · · ·Lw1(xj),

where vl ≥ · · · ≥ vp > [v]s1 ≥ vp−1 ≥ · · · ≥ v1 and wm ≥ · · · ≥ wq > [w]s2 ≥ wq−1 ≥ · · · ≥ w1.

From [u1]s1 = [u2]s2 and Lemma 2.3, it follows that xi = xj , l = m and either p = q, v1 =

w1, v2 = w2, · · · , vl = wl, [v]s1 = [w]s2 or p 6= q,(Here without loss of generality we may assume

p > q), v1 = w1, v2 = w2, · · · , vq−1 = wq−1, vq = [w]s2 , vq+1 = wq, · · · , vp−1 = wp−2, [v]s1 =
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wp−1, vp = wp, · · · , vl = wl.

If p = q, v1 = w1, v2 = w2, · · · , vl = wl, [v]s1 = [w]s2 , then

[u1]s1 − [u2]s2 = Lvl
· · ·Lvp

L([v]s1−[w]s2)Lvp−1 · · ·Lv1(xi).

By induction on w, [v]s1 ≡ [w]s2 mod(S, [v]s1)). From Lemma 3.3, it follows that [u1]s1 ≡
[u2]s2 mod(S,w).

Suppose that p > q, v1 = w1, v2 = w2, · · · , vq−1 = wq−1, vq = [w]s2 , vq+1 = wq, · · · , vp−1 =

wp−2, [v]s1 = wp−1, vp = wp, · · · , vl = wl. Then

[u1]s1 − [u2]s2 = Lvl
· · ·Lvp

L[v]s1
Lvp−1 · · ·Lvq+1Lvq

Lvq−1 · · ·Lv1(xi)

−Lvl
· · ·Lvp

L[v]s1
Lvp−1 · · ·Lvq+1L[w]s2

Lvq−1 · · ·Lv1(xi)

+Lvl
· · ·Lvp

L[v]s1
Lvp−1 · · ·Lvq+1L[w]s2

Lvq−1 · · ·Lv1(xi)

−Lvl
· · ·Lvp

Lwp−1Lvp−1 · · ·Lvq+1L[w]s2
Lvq−1 · · ·Lv1(xi)

= Lvl
· · ·Lvp

L([v]s1−wp−1)Lvp−1 · · ·Lvq+1L[w]s2
Lvq−1 · · ·Lv1(xi)

−Lvl
· · ·Lvp

L[v]s1
Lvp−1 · · ·Lvq+1L([w]s2−vq)Lvq−1 · · ·Lv1(xi).

Since [v]s1 − wp−1, [w]s2 − vq < w, by Lemmas 2.5 and 3.3, we conclude that

[u1]s1 ≡ [u2]s2 mod(S,w).

This completes our proof. 2
Theorem 3.7 Let S ⊂ LC(X) be a nonempty set of monic polynomials, N(X) the set of all

regular words on X and < the non-associative degree inverse lexicographic ordering on N(X).

Let Idr(S) be the right ideal of LC(X) generated by S. Then the following statements are

equivalent:

(i) S is a Gröbner-Shirshov basis for Idr(S);

(ii) f ∈ Idr(S) ⇒ f = [u]s̄ for some s ∈ S , where [u]s is a normal S-word;

(iii) f ∈ Idr(S) ⇒ f = α1[u1]s1 + α2[u2]s2 + · · · , where αi ∈ k, [u1]s1 > [u2]s2 > · · · , and

[ui]si
are normal S-words.

Proof (i) ⇒ (ii). Let S be a Gröbner-Shirshov basis and 0 6= f ∈ Idr(S). We may

assume, by Lemma 3.3, that

f =

n∑

i=1

αi[ui]si
,

where αi ∈ k, and [ui]si
are normal S-words. Let

wi = [ui]si
, w1 = w2 = · · · = wl > wl+1 ≥ · · · .

We will use the induction on l and w1 to prove that f = [u]s for some normal S-word [u]s.
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If l = 1, then f = [u1]s1 and hence the statement holds. Assume that l ≥ 2. Then

α1[u1]s1 + α2[u2]s2 = (α1 + α2)[u1]s1 − α2([u1]s1 − [u2]s2)

and by Lemma 3.6, we have

[u1]s1 ≡ [u2]s2 mod(S, [w1]).

Thus, if α1 + α2 6= 0 or l > 2, the result follows from the induction on l. For the case that

α1 + α2 = 0 and l = 2, we shall use induction on w1 and then the result follows.

(ii) ⇒ (iii). Assume that (ii) and 0 6= f ∈ Idr(S). Let f = α1f + · · · . Then, by (ii),

f = [u1]s1 . Therefore,

f1 = f − α1[u1]s1 , f1 < f, f1 ∈ Idr(S).

Now, by using induction on f , we have (iii).

(iii) ⇒ (i). Suppose that (f, g)f̄ = f−[u]g is a composition of inclusion of f and g, f, g ∈ S.

It is clear that (f, g)f̄ ∈ Idr(S). Then, by (iii), we have (f, g)f̄ = α1[u1]s1 + α2[u2]s2 + · · · ,
where αi ∈ k, f̄ > (f, g)f̄ = [u1]s1 > [u2]s2 > · · · . This completes the proof. 2
Theorem 3.8 The membership problems for the right ideals of free left-commutative algebras

are decidable.

Proof Let X be a finite set and N(X) all regular words on X . Let

T = {(u1, u2, · · · , ul)|ui ∈ N(X), u1 ≥ u2 ≥ · · · ≥ ul, 1 ≤ l}.

For (u1, u2, · · · , up), (v1, v2, · · · , vq) ∈ T , we define (u1, u2, · · · , up) > (v1, v2, · · · , vq) if either

p > q or p = q and (u1, u2, · · · , up) > (v1, v2, · · · , vq) lexicographically. Clearly, this ordering is

a well ordering on T .

Let S = {f1, . . . , fm} ∈ LC(X), 1 ≤ m. Let us assume that f1 ≥ f2 ≥ · · · ≥ fm.

Then we set ψ(S) = (f1, f2, · · · , fm). If there exists a composition of inclusion (fi, fj)fi
of

fi and fj, i < j, then we replace fi by (fi, fj)fi
and then we obtain a new set S1. Clearly,

Idr(S) = Idr(S1) and ψ(S) > ψ(S1). Since the ordering on T is a well ordering, we may obtain

a finite Gröbner-Shirshov basis Sc for the right ideal Idr(S) of LC(X).

Now, we show that the membership problem for the right ideal Idr(S) is decidable. We

may assume, without loss of generality, that S is a finite Gröbner-Shirshov basis for the right

ideal Idr(S). For an element g ∈ LC(X), if there is no normal S-word [u]fi
such that ḡ = [u]fi

,

then by Theorem 3.7 we may conclude that g /∈ Idr(S). Otherwise, we let g1 = g − [u]fi
.

Clearly, g ∈ Idr(S) if and only if g1 ∈ Idr(S). Since g1 < ḡ, we may complete the proof of this

theorem by the induction on ḡ. 2
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Abstract: In this paper, we study the curvature properties of the special (α, β)- metric

F = α + ǫβ + k
β2

α
(where ǫ, k 6= 0 are constants). We find the expressions for Riemann

curvature and Ricci curvature of the special (α, β)-metric, when β the 1- form is a killing

form of constant length. We give a characterization of the projective flatness for the special

(α, β)- metric.
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§1. Introduction

A Finsler metric F(x, y) on an n-dimensional manifoldMn is called an (α, β)-metric ([4]) F(x,y),

if F is positively homogeneous function of α and β of degree one, where α2 = aij(x)y
iyj is a

Riemannian metric and β = bi(x)y
i is a 1-form on Mn. The (α, β)-metrics form an important

class of Finsler metrics appearing iteratively in formulating physics, mechanics, Seismology,

Biology, control theory, etc ([1], [6]). There are several interesting curvatures in Finsler geometry

([2], [5]), among them two important curvatures are Riemann curvature and Ricci curvature.

Riemannian metrics on a manifold are quadratic metrics, while Finsler metrics are those

without restriction on the quadratic property. The Riemannian curvature in Riemannian ge-

ometry can be extended to Finsler metrics as a family of linear transformations on the tangent

spaces. The Ricci curvature plays an important role in the geometry of Finsler manifolds and

is defined as the trace of the Riemannian curvature on each tangent space.

Consider the Finsler space Fn = (Mn, F ) that is equipped with the special (α, β)-metric

F = α+ ǫβ + k
β2

α
(ǫ 6= 0, k 6= 0 are constants), where α2 = aij(x)y

iyj is a Riemannian metric

1Received April 27, 2016, Accepted November 10, 2016.
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and β = bi(x)y
i is a 1-form on an n-dimensional manifold Mn. Then the space Rn = (Mn, α)

is called the associated Riemannian space with Fn = (Mn, F ). The covariant differentiation

with respect to the Levi Civita connection γi
jk(x) of Rn is denoted by (:). We put aij = (aij)

−1

The main purpose of the current paper is to investigate the curvature properties of the

special (α, β)-metric α + ǫβ + k
β2

α
(ǫ, k 6= 0). The paper is organized as follows: Starting

with literature survey in section one, we find the Riemann curvature and Ricci curvature of

the Finsler space with special (α, β)- metric α + ǫβ + k β2

α in section two (see Theorem 2.1).

In section three, we obtain the necessary and sufficient conditions for a Finsler space with

(α, β)-metric to be locally projectively flat (see Theorem 3.1 ).

§2. Riemann curvature and Ricci curvature of special (α, β)-metric α+ ǫβ + k
β2

α

Let F be a Finsler metric on an n-dimensional manifold M and Gi be the geodesic coefficient

of F, which is defined by

Gi =
1

4
gil{[F 2]xmylym − [F 2]xl}. (1)

For any x ∈M and y ∈ TxM�{0}, the Riemann curvature Ry = Ri
m

∂
∂xi ⊗dxm : TxM

n →
TxM

n is defined by

Ri
m = 2

∂Gi

∂xm
− ∂2Gi

∂xm∂ym
ym + 2Gm ∂2Gi

∂ym∂ym
− ∂Gi

∂ym

∂Gm

∂ym
. (2)

The Ricci curvature is the trace of the Riemann curvature, and the Ricci scalar is defined

by

Ric = Ri
i, R =

1

n− 1
Ric. (3)

By definition, an (α, β)-metric on M is expressed in the form F = αφ(s), s = β
α , where

α =
√
aij(x)yiym is a positive definite Riemannian metric, β = bi(x)y

i is a 1-form. It is known

that (α, β)-metric with ‖βx‖α < b0 is a Finsler metric if and only if φ = φ(s) is a positive

smooth function on an open interval (−b0, b0) satisfying the following conditions:

φ(s) − sφ′ + (b2 − s2)φ′′(s) > 0, ∀ |s| ≤ b < b0. (4)

For a special (α, β)-metric α+ ǫβ + k β2

α , we have

φ(s) = (1 + ǫs+ ks2); s =
β

α
. (5)

Let Gi(x, y) and Gi
α(x, y) denote the spray coefficients of F and α respectively. To express

formula for the spray coefficients Gi of F in terms of α and β, we need to introduce some
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notations. Let bi:j be a covariant derivative of bi with respect to yj . Denote

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i),

si
j = aihshj , sj = bis

i
j = sijb

i, rj = rijb
i,

r0 = rjy
j, s0 = sjy

j , r00 = rijy
iyj .

Lemma 2.1([3]) For an (α, β)-metric F = αφ(s), s = β
α , the geodesic coefficients Gi are

given by

Gi = Gi
α + αQsi

0 + Θ(−2αQs0 + r00)
yi

α
+ ψ(−2αQs0 + r00)

(
bi − yi

α

)
, (6)

where

Q =
φ

φ− sφ′
,

Θ =
(φ − sφ′)φ′

2φ((φ− sφ′) + (b2 − s2)φ′′
,

Ψ =
φ′′

2((φ− sφ′) + (b2 − s2))φ′′
.

Here bi = aijbj, and b2 = aijbibj = bjb
j.

Lemma 2.2 For a special (α, β)-metric F = α + ǫβ + k β2

α , the geodesic coefficients Gi are

given by

Gi = Gi
α + α

(ǫ+ 2ks)

1 − ks2
si
0

+
(ǫ+ 2ks− ǫks2 − 2k2s3)

2(1 + 2kb2 − 3ks2)(1 + ǫs+ ks2)

[
−2α

(ǫ+ 2ks)

1 − ks2
s0

+r00

]yi

α
+

k

1 + 2kb2 − 3ks2

[
−2α

(ǫ+ 2ks)

1 − ks2
s0 + r00

](
bi − yi

α

)
(7)

Proof By a direct computation, we get (7) from (6) 2
Theorem 2.1 For a Finsler space with special (α, β)- metric F = α + ǫβ + k β2

α , the Ricci

curvature of F is given by

Ric = Ric+ T, (8)

where Ric(= αRic) denotes the Ricci curvature of α, and

T =
4kFα3

(α2 − kβ2)2
s0js

m
0 + 2

α2(ǫα+ 2kβ)

α2 − kβ2
sm
0:j

+
2(ǫα2 + 2kαβ){ǫα4 − ǫkα2β2 + 2kα3β − 2k2αβ3 + 2skα3F}

(α2 − kβ2)3
s0ms

m
0

−α2 (ǫα2 + 2kαβ)2

(α2 − kβ2)2
sm

j s
j
m
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Proof Consider the Finsler space with special (α, β)- metric F = α + ǫβ + k β2

α on an

n-dimensional manifold Mn. From Lemma 2.2, the geodesic coefficients Gi of F are related to

the coefficients Gi
α of α by

Gi = Gi
α + Pyi + T i, (9)

where

P =
[ǫ− 2k + 2k(1 − ǫ)s− (ǫ+ 2k)ks2 − 2k2s3]

2α(1 + 2kb2 − 3ks2)(1 + ǫs+ ks2)

[
−2α

(ǫ+ 2ks)

1 − ks2
s0 + r00

]
,

T i =
α(ǫ+ 2ks)

1 − ks2
si
0 +

k

1 + 2kb2 − 3δs2

[−2α(ǫ+ 2ks)s0
1 − ks2

+ r00

]
bi. (10)

In this section, we assume that β is a killing form of constant length i. e., β satisfies

rij = 0, and bjbj:m = 0. (11)

Equation (11) implies that

sij = bi:j , sj = bisij = 0, bisj
i = bisria

jr = −bisira
jr = 0. (12)

Thus P = 0 and (9) reduces to

Gi = Gi
α + T i, (13)

where

T i =
α(ǫ+ 2ks)

1 − ks2
si
0, (14)

Now from (2) and (13), we obtain ([7])

Ri
m = αRi

m + 2T i
:m − yjT i

:j.m − T i
.jT

j
.m + 2T jT i

j.m, (15)

where T i
.j = ∂T i

∂yj . Thus the Ricci curvature of F is related to the Ricci curvature of α by

Ric = Ric+ 2Tm
:m − yjTm

:j.m − Tm
.j T

j
.m + 2T jTm

j.m, (16)

where “ : ”and “ . ”denotes the horizontal covariant derivative and vertical covariant derivative

with respect to the Berwald connection determined by Ḡi respectively.

Note that

α:m = 0, y:m = 0, β:m = r0m + som, b2:m = 2(rm + sm), bi:m = ri
m + si

m.

s.i =
bi
α

− syi

α2
, s:i =

s0i

α
, s.j.i =

(bjyi + biyj)

α3
+ 3s

yiyj

α4
− s

aji

α2

We have F:m = (α + ǫβ + k
β2

α
):m =

(
ǫ +

2kβ

α

)
b0:m and Fym = (α + ǫβ + k

β2

α
)ym =

ym

α
+
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ǫbm + k
β2ym

α3
. Thus from (14), we have

Tm
:j =

2kFs0js
m
0

(1 − ks2)2α
+
α(ǫ+ 2ks)

1 − ks2
sm
0:j

=
2kFα3

(α2 − kβ2)2
s0js

m
0 +

α2(ǫα+ 2kβ)

α2 − kβ2
sm
0:j . (17)

Using bis
i
0 = 0, bis

i
j = 0, yis

i
0 = 0 & yis

i
0:j = 0, we obtain Tm

j.m = 0 and Tm
j.my

j = 0.

Consequently, we obtain the following

T jT k
.j.k =

(ǫα2 + 2kαβ)2

(α2 − kβ2)2
sk0s

k
0 − s

2kFα3

(α2 − kβ2)2
sj0s

j
0

+
(ǫα2 + 2kαβ)2

(α2 − kβ2)2
sj
0s

0
j − s

2kα3F (ǫα2 + 2kαβ)

(α2 − kβ2)3
sj
0s

0
j .

Tm
.j T

j
.m = 2

(ǫα2 + 2kαβ)2

(α2 − kβ2)2
s0ms

m
0 − 2s

2kα3F (ǫα2 + 2kαβ)

(α2 − kβ2)3
s0ms

m
0 + α2 (ǫα2 + 2kαβ)2

(α2 − kβ2)2
sm

j s
j
m.

Plugging these values into (16), we get

Ric = Ric+ 2Tm
:m − yjTm

:j.m − Tm
.j T

j
.m + 2T jTm

.j.m

= Ric+
4kFα3

(α2 − kβ2)2
s0js

m
0 + 2

α2(ǫα+ 2kβ)

α2 − kβ2
sm
0:j + 2

(ǫα2 + 2kαβ)2

(α2 − kβ2)2
s0ms

m
0 +

4skα3F (ǫα2 + 2kαβ)

(α2 − kβ2)3
s0ms

m
0 − α2 (ǫα2 + 2kαβ)2

(α2 − kβ2)2
sm

j s
j
m + 2

(ǫα2 + 2kαβ)2

(α2 − kβ2)2
sm0s

m
0

−2s
2kFα3

(α2 − kβ2)2
sj0s

j
0 + 2

(ǫα2 + 2kαβ)2

(α2 − kβ2)2
sj
0s

0
j − 4s

kα3F (ǫα2 + 2kαβ)

(α2 − kβ2)3
sj
0s

0
j . (18)

Since sm0 = −s0m and s0j = −sj0, equation (18) becomes

Ric = Ric+
4kFα3

(α2 − kβ2)2
s0js

m
0 + 2

α2(ǫα+ 2kβ)

α2 − kβ2
sm
0:j + 2

(ǫα2 + 2kαβ)2

(α2 − kβ2)2
s0ms

m
0 +

4skα3F (ǫα2 + 2kαβ)

(α2 − kβ2)3
s0ms

m
0 − α2 (ǫα2 + 2kαβ)2

(α2 − kβ2)2
sm

j s
j
m

= Ric+
4kFα3

(α2 − kβ2)2
s0js

m
0 + 2

α2(ǫα+ 2kβ)

α2 − kβ2
sm
0:j +

2(ǫα2 + 2kαβ){ǫα4 − ǫkα2β2 + 2kα3β − 2k2αβ3 + 2skα3F}
(α2 − kβ2)3

s0ms
m
0 −

α2 (ǫα2 + 2kαβ)2

(α2 − kβ2)2
sm

j s
j
m. (19)

This completes the proof. 2
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§3. Projectively Flat (α, β)-metric

A Finsler metric F = F(x,y) on an open subset U ⊂ Rn is projectively flat [3] if and only if

Fxmylym − Fxl = 0. (20)

By (20), we have the following lemma ([8]).

Lemma 3.1 An (α, β)- metric F = αφ(s), where s = β
α , is projectively flat on an open subset

U ⊂ Rn if and only if

(amlα
2 − ymyl)G

m
α + α3Qsl0 + ψα(−2αQs0 + r00)(blα− syl) = 0. (21)

In this section, we consider the Finsler space with special (α, β)- metric F = α+ ǫβ+k
β2

α
,

where ǫ, k 6= 0 are constants. We have

F = αφ(s), φ(s) = (1 + ǫs+ ks2). (22)

Let b0 > 0 be the largest number such that

φ(s) − sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b < b0). (23)

That is,

1 + 2kb2 − 4ks2 > 0, (|s| ≤ b < b0). (24)

Lemma 3.2 F = α+ ǫβ + k
β2

α
is a Finsler metric iff ‖β‖α < 1.

Proof If F = α+ ǫβ + k
β2

α
is a Finsler metric, then

1 + 2kb2 − 4ks2 > 0, (|s| ≤ b < b0). (25)

Let s = b, then we get b <
1√
2k

, ∀ b < b0. Let b→ b0, then b0 <
1√
2k

. So ‖β‖α <1. Now,

if

|s| ≤ b <
1√
2k

(26)

then

1 + 2kb2 − 4ks2 > 0, (|s| ≤ b < b0). (27)

Thus F = α+ ǫβ + k
β2

α
is a Finsler metric. 2
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By Lemma 2.2, the spray coefficients are given by

Q =
ǫα2 + 2kαβ

α2 − kβ2
,

Θ =
ǫα3 − 2kα2β − ǫkαβ2 − 2k2β3

2{(1 + 2kb2)α2 − 3kβ2}{α2 + ǫαβ + kβ2
,

ψ =
kα2

(1 + 2kb2)α2 − 3kβ2
.

Equation (21) is reduced to the following form:

(amlα
2 − ymyl)G

m
α + α3

(ǫα2 + 2kαβ

α2 − kβ2

)
sl0 + α

( kα2

(1 + 2kb2)α2 − 3kβ2

)

[
−2α

(ǫα2 + 2kαβ

α2 − kβ2

)
s0 + r00

](
blα− β

α
yl

)
= 0. (28)

Lemma 3.3 If (amlα
2 − ymyl)G

m
α = 0, then α is projectively flat.

Proof If (amlα
2 − ymyl)G

m
α = 0, then

amlα
2 = ymylG

m
α ,

then there is a η = η(x, y) such that ymG
m
α = α2η, we get

amlG
m
α = ηyl.

Contracting with ail yields Gi
α = ηyi, and thus α is projectively flat. 2

Theorem 3.1 A Finsler space with special (α, β)-metric F = α + ǫβ + k β2

α (where ǫ, k 6= 0

are constants) is locally projectively flat iff

(1) β is parallel with respect to α;

(2) α is locally projectively flat, i. e., of constant curvature.

Proof Suppose that F is locally projectively flat. First, we rewrite (28) as a polynomial in

yi and α. This gives,

(amlα
2 − ymyl)G

m
α

[
{(1 + 2kb2)α2 − 3kβ2}{α2 − kβ2}

]
+ 2kα4β{(1 +

2kb2)α2 − 3kβ2}sl0 + kr00α
2(α2 − kβ2)(blα

2 − βyl) − 4k2α4βs0(blα
2 −

βyl) + α
{
ǫα4{(1 + 2kb2)α2 − 3kβ2}sl0 − 2ǫkα4s0(blα

2 − βyl)
}

= 0. (29)

or

U + αV = 0, (30)
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where

U = (amlα
2 − ymyl)G

m
α

[
{(1 + 2kb2)α2 − 3kβ2}{α2 − kβ2}

]
+ 2kα4β{(1 +

2kb2)α2 − 3kβ2}sl0 + kr00α
2(α2 − kβ2)(blα

2 − βyl) − 4k2α4βs0

(blα
2 − βyl),

and

V = ǫα4{(1 + 2kb2)α2 − 3kβ2}sl0 − 2ǫkα4s0(blα
2 − βyl).

Now, (30) is a polynomial in (yi), such that U and V are rational in yi and α is irrational.

Therefore, we must have

U = 0 and V = 0, (31)

which implies that

(amlα
2 − ymyl)G

m
α

[
{(1 + 2kb2)α2 − 3kβ2}{α2 − kβ2}

]
+ 2kα4β{(1

+2kb2)α2 − 3kβ2}sl0 + kr00α
2(α2 − kβ2)(blα

2 − βyl) − 4k2α4βs0

(blα
2 − βyl) = 0 (32)

and

ǫα4{(1 + 2kb2)α2 − 3kβ2}sl0 − 2ǫkα4s0(blα
2 − βyl) = 0. (33)

From (30), considering only terms which do not contain β. There exists a homogenous

polynomial V7 of degree seven in yi such that

{
(1 + 2kb2)ǫsl0 − 2kǫbls0

}
α7 = βV7. (34)

Since α2 ≇ o(modβ), we must have a function ul = ul(x) satisfying

(1 + 2kb2)ǫsl0 − 2kǫbls0 = ulβ. (35)

Transvecting (35) by bl, we have

(1 + 2kb2)ǫs0 − 2kǫb2s0 = ulβbl. (36)

That is,

ǫsj = ulblbj . (37)

Further transvecting by bj, we have uibib
2 = 0, which implies ulbl = 0. Substituting this

equation into (36), we get s0 = 0. Now, from (32), by contracting with bl, we get

(bmα
2 − ymβ)Gm

α

[
{(1 + 2kb2)α2 − 3kβ2}{α2 − kβ2}

]
+ 2kα4β{(1 +

2kb2)α2 − 3kβ2}s0 + kr00α
2(α2 − kβ2)(b2α2 − β2) − 4k2α4βs0(blα

2 − βyl) = 0. (38)
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Since s0 = 0, we get

(bmα
2 − ymβ)Gm

α

[
{(1+2kb2)α2 − 3kβ2}{α2− kβ2}

]
+ kr00α

2(α2 − kβ2)(b2α2 −β2) = 0. (39)

Contracting (39) by ym, we get

r00 = 0. (40)

From (33), we get

sl0 = 0. (41)

Then by (40) and Lemma 3.3, α is projectively flat. From (40) and (41), bi;j = 0, i. e., β is

parallel to α.

Conversely, if β is parallel with respect to α and α is locally projectively flat, then by

Lemma 3.3, we can easily see that F is locally projectively flat. 2
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Abstract: A roman dominating function on a graph G is a function f : V (G) −→ {0, 1, 2}

satisfying the condition that every vertex v ∈ V (G) for which f(v) = 0, is adjacent to at

least one vertex u with f(u) = 2. The weight of a roman dominating function f is the value

w(f) =
∑

v∈V

f(v). The minimum weight of a roman dominating function is called the roman

domination number of G and is denoted by γR(G). A roman dominating function f is called

a nonsplit roman dominating function if the subgraph induced by the set {v : f(v) = 0}

is connected. The minimum weight of a nonsplit roman dominating function is called the

nonsplit roman domination number and is denoted by γnsr(G). In this paper, we initiate a

study of this parameter.

Key Words: Domination number, roman domination number and nonsplit roman domi-

nation number.

AMS(2010): 05C69.

§1. Introduction

The graph G = (V,E) we mean a finite, undirected, connected graph with neither loops nor

multiple edges. The order and size of G are denoted by n and m respectively. The degree of

a vertex u in G is the number of edges incident with u and is denoted by dG(u), simply d(u).

The minimum and maximum degree of a graph G is denoted by δ(G) and ∆(G), respectively.

For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [3, 4].

Let v ∈ V . The open neighborhood and closed neighborhood of v are denoted by N(v)

and N [v] = N(v) ∪ {v}. If S ⊆ V then N(S) =
⋃

v∈S

N(v) for all v ∈ S and N [S] = N(S) ∪ S.
If S ⊆ V and u ∈ S then the private neighbor set of u with respect to S is defined by

pn[u, S] = {v : N [v]∩S = {u}}. For any set S ⊆ V , the subgraph induced by S is the maximal

subgraph of G with vertex set S and is denoted by 〈S〉.The vertex has degree one is called a

pendant vertex. A support is a vertex which is adjacent to a pendant vertex. A weak support

is a vertex which is adjacent to exactly one pendant vertex. A strong support is a vertex which

is adjacent to at least two pendant vertices. An unicyclic graph is a graph with exactly one

cycle. A graph without cycle is called acyclic graph and a connected acyclic graph is called

a tree. H(m1,m2, · · · ,mn) denotes the graph obtained from the graph H by attaching mi

1Received January 31, 2016, Accepted August 23, 2016.
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pendant edges to the vertex vi ∈ V (H), 1 ≤ i ≤ n. The graph K2(m1,m2) is called bistar and

it is also denoted by B(m1,m2). H(Pm1 , Pm2 , · · · , Pmn
) is the graph obtained from the graph

H by attaching an end vertex of Pmi
to the vertex vi in H, 1 ≤ i ≤ n. The clique number ω(G)

is the maximum order of the complete subgraph of the graph G.

A subset S of V is called a dominating set of G if every vertex in V − S is adjacent to at

least one vertex in S. The minimum cardinality of a dominating set is called the domination

number of G and is denoted by γ(G). V.R.Kulli and B.Janakiram [5] introduced the concept of

nonsplit domination in graphs.Also T.Tamizh Chelvam and B.Jayaparsad [6] studied the same

concept in the name of the complementary connected domination in graphs. A dominating

set S is called a nonsplit dominating set of a graph G if the induced subgraph 〈V − S〉 is

connected. The minimum cardinality of a nonsplit dominating set of G is called the nonsplit

domination number of G and is denoted by γns(G). A dominating set(nonsplit dominating set)

of minimum cardinality is called γ−set (γns−set) of G. E.J.Cockayne et.al [2] studied the

concept of roman domination first. A roman dominating function on a graph G is a function

f : V (G) −→ {0, 1, 2} satisfying the condition that every vertex v ∈ V for which f(v) = 0 is

adjacent to at least one vertex u ∈ V with f(v) = 2. The weight of a roman dominating function

is the value w(f) =
∑

v∈V

f(v). The minimum weight of a roman dominating function is called

the roman dominating number of G and is denoted by γR(G). P.Roushini Leely Pushpam and

S.Padmapriea [6] introduced the concept of restrained roman domination in graphs. A roman

dominating function f is called a restrained roman dominating function if the subgraph induced

by the set {v : f(v) = 0} contains no isolated vertex. The minimum weight of a restrained

roman dominating function is called the restrained roman domination number of G and is

denoted by γrR(G). In this paper we introduce the concept of nonspilt roman domination and

initiate a study of the corresponding parameter.

Theorem 1.1 ([7]) Let G be a graph. Then γns(G) = n− 1 if and only if G is a star.

§2. Nonsplit Roman Domination Number

Definition 2.1 A roman dominating function f is called a nonsplit roman dominating function

if the subgraph induced by the set {v : f(v) = 0} is connected. The minimum weight of a nonsplit

roman dominating function is called the nonsplit roman domination number of G and is denoted

by γnsr(G).

Remark 2.2 For a graph G, let f : V −→ {0, 1, 2} and let (V0, V1, V2) be the ordered partion

of V induced by f , where Vi = {v ∈ V : f(v) = i}. Note that there exists an one to one

correspondence between the function f : V −→ {0, 1, 2} and the ordered partition (V0, V1, V2)

of V . Thus we will write f = (V0, V1, V2).

A function f = (V0, V1, V2) is a nonsplit roman dominating function if V0 ⊆ N(V2) and

the induced subgraph 〈V0〉 is connected.The minimum weight of a nonsplit roman dominating

function of G is called the nonsplit roman domination number of G and is denoted by γnsr(G).

We say that a function f = (V0, V1, V2) is a γnsr−function if it is an nonsplit roman dominating
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function and w(f) = γnsr(G). Also w(f) = |V1| + 2|V2|.

A few nonsplit roman domination number of some standard graphs are listed in the fol-

lowing.

(1) Any nontrivial path Pn, γnsr(Pn) = n;

(2) If n ≥ 4 then γnsr(Cn) = n;

(3) If n ≥ 2 then γnsr(Kn) = 2;

(4) γnsr(Wn) = 2;

(5) γnsr(K1,n−1) = n;

(6) γnsr(Kr,s) = 4 where r, s ≥ 2.

Theorem 2.3 For a graph G, γns(G) ≤ γnsr(G) ≤ 2γns(G).

Proof Let f = (V0, V1, V2) be a γnsr−function. Then V1 ∪ V2 is a nonsplit dominating

set of G. Hence γns ≤ |V1 ∪ V2| = |V1| + |V2| ≤ |V1| + 2|V2| = γnsr. Also, let S be any

γns−set of G. Then f = (V − S, φ, S) is a nonsplit roman dominating function of G. Hence

γnsr(G) ≤ 2|S| = 2γns(G). 2
Observation 2.4 For a nontrivial graph G,

(i) γ(G) ≤ γns(G) ≤ γnsr(G);

(ii) 2 ≤ γnsr(G) ≤ n.

Remark 2.5 (i) For any connected graph G, γnsr(G) = 2 if and only if there exists a non

cut vertex v such that dG(v) = n − 1. Thus γnsr(G) = 2 if and only if G = H +K1 for some

connected graph H .

(ii) For any connected spanning subgraph H of G, γnsr(G) ≤ γnsr(H).

Theorem 2.6 If G contains a triangle then γnsr(G) ≤ n− 1.

Proof Let v1, v2, v3 form a triangle in G. Then f = ({v1, v2}, V − {v1, v2, v3}, {v3}) is a

nonsplit roman dominating function of G and hence γnsr(G) ≤ n− 1. 2
Theorem 2.7 Let v ∈ V (G) such that dG(v) = ∆ and 〈N(v)〉 be connected. Then γnsr(G) ≤
n− ∆ + 1.

Proof Let us take f = (N(v), V −N [v], {v}). Then it is clear that f is a nonsplit roman

dominating function. Hence γnsr(G) ≤ |V −N [v]| + 2 = n− (∆ + 1) + 2 = n− ∆ + 1. 2
Definition 2.8 Let f = (V0, V1, V2) be a nonsplit roman dominating function and let u ∈
Vi, 0 ≤ i ≤ 2. The function fu is defined as follows:

Let Vj and Vk be the two sets in the ordered partition (V0, V1, V2) other than Vi.

V ′
l =





Vi − {u}, if l = i

Vj ∪ {u}, if l = j

Vk, if l = k, 0 ≤ l ≤ 2.

,
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Then the function fu = (V ′
0 , V

′
1 , V

′
2).

It is clear that for every u ∈ Vi there are two functions fu.

Definition 2.9 A nonsplit roman dominating function f = (V0, V1, V2) is said to be a minimal

nonsplit roman dominating function if for every u ∈ Vi, 0 ≤ i ≤ 2 either w(fu) > w(f) or fu is

not a nonsplit roman dominating function.

We now proceed to obtain a characterization of minimal nonsplit roman dominating func-

tion.

Theorem 2.10 A nonsplit roman dominating function f = (V0, V1, V2) is minimal if and only

if for each u ∈ V1 and v ∈ V2 the following conditions are true.

(i) N(u) ∩ V0 = φ or N(u) ∩ V2 = φ;

(ii) There exists a vertex w ∈ V0 such that N(w) ∩ V2 = {v}.

Proof Let f = (V0, V1, V2) be a minimal nonsplit roman dominating function and let

u ∈ V1, v ∈ V2. Suppose N(u)∩ V0 6= φ and N(u)∩ V2 6= φ. Then fu = (V0 ∪ {u}, V1 − {u}, V2)

is a nonsplit roman dominating function with w(fu) = |V1| − 1 + 2|V2| ≤ w(f) which is a

contradiction. Hence either N(u) ∩ V0 = φ or N(u) ∩ V2 = φ.

Suppose there is no vertex w ∈ V0 such that N(w) ∩ V2 = {v}. Then fv = (V0, V1 ∪
{v}, V2 − {v}) is a nonsplit roman dominating function with w(fv) = |V1| + 1 + 2(|V2| − 1) =

|V1| + 2|V2| − 1 ≤ w(f) which is a contradiction. Hence for every v ∈ V2 there exists a vertex

w ∈ V0 such that N(w) ∩ V2 = {v}. The converse is straightforward. 2
Theorem 2.11 For a nontrivial graph G, γnsr(G) + ω(G) ≤ n + 2 where ω(G) is the clique

number of G.

Proof Let S be a set of vertices of G such that 〈S〉 is complete with |S| = ω(G). Then

f = (S − {u}, V − S, {u}) is a nonsplit roman dominating function of G. Hence γnsr(G) ≤
|V − S| + 2 = n− ω(G) + 2. Thus γnsr(G) + ω(G) ≤ n+ 2. 2
Theorem 2.12 For a graph G, γnsr(G) ≥ 2n−m− 1.

Proof Let f = (V0, V1, V2) be a γnsr−function. Since 〈V0〉 is connected and every vertex

in V0 is adjacent to at least one vertex in V2, 〈V0 ∪ V2〉 contains at least 2|V0| − 1 edges.

Case 1. 〈V1〉 is connected.

Then 〈V1〉 contains at least |V1| − 1 edges. Since G is connected there should be an edge

between a vertex of V1 and a vertex of V0 ∪ V2. Hence there are at least |V1| edges other than

the edges in 〈V0 ∪ V2〉.

Case 2. 〈V1〉 is disconnected.

Let G1, G2, · · · , Gk be the components of 〈V1〉. Since each Gi contains at least |V (Gi)| − 1

edges and since G is connected there exists an edge between a vertex of Gi and a vertex of
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V0 ∪ V2. Hence there are at least Σ(|V (Gi)| − 1) + k (= |V1|) edges.

Hence m ≥ 2|V0| − 1 + |V1| = 2(n − |V2| − |V1|) − 1 + |V1| = 2n − (2|V2| + |V1|) − 1 =

2n− γnsr(G) − 1. Hence γnsr(G) ≥ 2n−m− 1. 2
Corollary 2.13 For a tree T , γnsr(T ) = n.

Proof n ≥ γnsr(T ) ≥ 2n− (n− 1) − 1 = n. Hence γnsr(T ) = n. 2
Corollary 2.14 For an unicyclic graph G, n− 1 ≤ γnsr(G) ≤ n.

Theorem 2.15 Let G be an unicyclic graph with cycle C = (v1, v2, · · · , vk, v1). Then γnsr(G) =

n− 1 if and only if one of the following is true.

(i) C = C3;

(ii) dG(v) ≥ 3 for all v ∈ V (H) where H is a connected subgraph of C of order at least

k − 3.

Proof Let G be an unicyclic graph with cycle C = (v1, v2, · · · , vk, v1). Let C = C3. Then

G contains a triangle and hence by Theorem 2.6, γnsr(G) ≤ n− 1 which gives γnsr(G) = n− 1.

Suppose C contains a connected subgraph H such that |V (H)| ≥ k − 3 and dG(v) ≥ 3 for

all v ∈ V (H). It is clear that H is either C or a path. Let P be a path in H of order k− 3. Let

P = (v1, v2, · · · , vk−3) and let ui ∈ N(vi)−V (C), vi ∈ V (P ). Let X = {u1, u2, · · · , uk−3}, V0 =

V (P )∪{vk, vk−2}, V1 = V (G)−(V (C)∪X), V2 = X∪{vk−1}. Then f = (V0, V1, V2) is a nonsplit

roman dominating function of G. Thus γnsr(G) ≤ n− (k + k − 3) + 2(k − 3 + 1) = n− 1 and

hence γnsr(G) = n− 1.

Conversely, let us assume γnsr(G) = n − 1. Let f = (V0, V1, V2) be a γnsr−function of G.

Suppose conditions (i) and (ii) given in the statement of the theorem are not true.

Let P = (v1, v2, · · · , vk−3) be a path in C such that dG(vi) = 2 for some i, 1 ≤ i ≤ k − 3

and dG(vj) = 2, k − 2 ≤ j ≤ k.

Case 1. i 6= 1 and i 6= k − 3

Then at least one vertex v in the subpath (vi−1, vi, vi+1) with f(v) 6= 0 and at least two

vertices u and w in the subpath (vk−3, vk−2, vk−1, vk, v1) with f(u) 6= 0 and f(w) 6= 0 and hence

either 〈V0〉 is the union of two distinct paths or V0 = φ. Thus either 〈V0〉 is disconnected or

|V0| = |V2| = 0. Hence f is not a nonsplit roman dominating function or γnsr = n which is a

contradiction.

Case 2. i = 1 or i = k − 3

Let dG(vi) ≥ 3, 1 ≤ i ≤ k−2 and dG(vj) = 2, k−3 ≤ j ≤ k. Then at least two vertices x and

y in {vk−3, vk−2, vk−1, vk}, dG(x) 6= 0 and dG(y) 6= 0. Hence for every vertex v with f(v) = 2

there exists exactly one vertex u with f(u) = 0. Thus γnsr(G) = n which is a contradiction.

This proves the result. 2
Now we characterize the lower bound in Theorem 2.3.

Theorem 2.16 Let G be a connected graph. Then γns = γnsr(G) if and only if G is a trivial
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graph.

Proof Let f = (V0, V1, V2) be a γnsr−function of G. Then γns(G) ≤ |V1| + |V2| ≤
|V1| + 2|V2| = γnsr(G) which gives |V2| = 0. Then V0 = φ and hence V1 = V. Then γns(G) =

γnsr(G) = n which gives G is a trivial graph. 2
Theorem 2.17 Let G be a nontrivial graph of order n. Then γnsr(G) = γns(G)+1 if and only

if there exists a vertex v ∈ V (G) such that 〈N(v)〉 has a component of order n− γns(G).

Proof Let v ∈ V (G) such that 〈N(v)〉 has a component of order n − γns(G). Let G1 be

the component of 〈N(v)〉 with |V (G1)| = n − γns(G). Let V2 = {v}, V1 = V − (V (G1) ∪ {v})
and V0 = V − V1 − V2. Then V1 ∪ V2 is a γns−set of G and f = (V0, V1, V2) is a nonsplit roman

dominating function and hence γnsr(G) ≤ |V1|+ 2|V2| = n− (n− γns(G)+ 1)+ 2 = γns(G)+ 1.

Since G is nontrivial γns(G) + 1 ≤ γnsr(G) and hence γnsr(G) = γns(G) + 1.

Conversely, let us assume γnsr(G) = γns(G)+1 and let f = (V0, V1, V2) be a γnsr−function

of G. Then γnsr(G) = |V1|+ 2|V2| which gives γns(G) + 1 = |V1|+ 2|V2|. Then |V1| = γns(G) +

1 − 2|V2|.
Suppose |V2| ≥ 2. Since V1 ∪ V2 is a nonsplit dominating set, γns(G) ≤ |V1| + |V2| =

γns(G) + 1 − 2|V2| + |V2| = γns(G) + 1 − |V2| ≤ γns(G) − 1 which is a contradiction. Hence

|V2| ≤ 1.

If |V2| = 0 then |V0| = 0 and hence |V1| = V . Thus γnsr(G) = n and γns(G) = n−1. Then

by theorem 1.1 G is a star. Let v be a pendant vertex of G and hence 〈N(v)〉 is a center vertex

of star G. Thus |N(v)| = 1 = n− (n− 1) = n− γns(G).

Suppose |V2| = 1. Let V2 = {v} and let f = (V0, V1, V2) be a γnsr−function of G.

Thus γnsr = |V1| + 2. Then γns(G) + 1 − 2 = |V1| which gives |V1| = γns(G) − 1. Hence

|V0| = n− |V1| − |V2| = n− (γns(G) − 1) − 1 = n− γns(G) then the result follows. 2
Corollary 2.18 For any graph G, if γnsr(G) = γns(G) + 1 then diam(G) ≤ 4 and rad(G) ≤ 2.

Proof Let γnsr(G) = γns(G) + 1. Then there is a vertex v ∈ V (G) such that 〈N(v)〉 has

a component of order n − γns(G). Hence every vertex in V − N [v] is adjacent to a vertex in

N(v).Thus diam(G) ≤ 4 and rad(G) ≤ 2. 2
Corollary 2.19 If T is a tree then γnsr(T ) = γns(T ) + 1 if and only if T is a star.

Theorem 2.20 Let G be an unicyclic graph with the cycle C = (v1, v2, · · · , vk, v1). Then

γnsr(G) = γns(G) + 1 if and only if G is isomorphic to C3(n1, n2, 0).

Proof Let us assume γnsr(G) = γns(G) + 1. Then there is a vertex v ∈ V (G) such that

〈N(v)〉 has a component of order n − γns(G). Let G1 be a component of 〈N(v)〉 such that

|V (G1)| = n − γns(G). If |V (G1)| ≥ 3 then there is a path P (u1, u2, u3) in G1. Then the

induced subgraph of the sets {v, u1, u2} and {v, u2, u3} are cycles which is a contradiction.

Hence |V (G1)| = 2 and hence C = C3 so that C = (v1, v2, v3, v1). If dG(vi) ≥ 3 for all i then

V −{v1, v2, v3} is a nonsplit dominating set of G and hence γns(G) ≤ n−3 then γnsr(G) ≤ n−2

which is a contradiction. Hence dG(vi) = 2 for some i. Let dG(v3) = 2.
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Suppose there is a vertex x ∈ V (G) − V (C) such that dG(x) ≥ 2. Let v1 ∈ V (C) such

that d(C, x) = d(v1, x). Let (v1, x1, x2, · · · , xr, x), r ≥ 1 be the shortest v1 − x path. Then

V (G) − {v1, v2, x1} is a nonsplit dominating set of G and hence γns(G) ≤ n − 3 which is a

contradiction. Hence every vertex in V − V (C) is a pendant vertex which follows the result.2
Theorem 2.21 Let G be a nontrivial graph of order n. Then γnsr(G) = γns(G)+2 if and only

if

(i) every vertex v ∈ V (G) such that 〈N(v)〉 has no component of order n− γns(G);

(ii) G has a vertex v such that 〈N(v)〉 has a component of order n− γns(G) − 1 or G has

two vertices u and v such that 〈N(u) ∪N(v)〉 has a component of order n− γns.

Proof Let the graphG be satisfy the conditions (i) and (ii) in the statement of the theorem.

By condition (i) and Theorem 2.17, γnsr(G) ≥ γns(G)+2. Suppose v ∈ V (G) such that 〈N(v)〉
has a component G1 of order n−γns(G)−1. Then (V (G1), V − (V (G1)∪{v}, {v}) is a nonsplit

roman dominating function of G and hence γnsr(G) ≤ n−(n−γns(G)−1+1)+2 = γns(G)+2.

Hence γnsr(G) = γns + 2. Suppose G has two vertices u and v such that 〈N(u) ∪N(v)〉 has a

component of order n − γns(G). Let G2 be the component of 〈N(u) ∪ N(v)〉 with |V (G2)| =

n− γns(G). Let V2 = {u, v}, V1 = V − (V (G2) ∪ {u, v}) and V0 = V − V1 − V2. = V (G2). Then

V1∪V2 is a γns−set of G and f = (V0, V1, V2) is a nonsplit roman dominating function and hence

γnsr(G) ≤ |V1|+2|V2| = n− (n−γns(G)+2)+4 = γns(G)+2 and hence γnsr(G) = γns(G)+2.

Conversely, let us assume γnsr(G) = γns(G)+2 and let f = (V0, V1, V2) be a γnsr−function

of G. Then γnsr(G) = |V1|+ 2|V2| which gives γns(G) + 2 = |V1|+ 2|V2|. Then |V1| = γns(G) +

2 − 2|V2|.
Suppose |V2| ≥ 3. Since V1 ∪ V2 is a nonsplit dominating set, γns(G) ≤ |V1| + |V2| =

γns(G) + 2 − 2|V2| + |V2| = γns(G) + 2 − |V2| ≤ γns(G) − 1 which is a contradiction. Hence

|V2| ≤ 2.

If |V2| = 0 then |V0| = 0 and hence |V1| = V . Thus γnsr(G) = n and γns(G) = n − 2.

Let S be a γns−set of G. Then 〈V − S〉 = K2 = xy. Suppose |S| = 1. Then G = C3 and

hence γnsr(G) = 2 and γns(G) = 1 which is a contradiction. Thus |S| ≥ 2. Then S contains

two vertices u and v which dominates x and y. Thus G contains two vertices u and v such that

〈N(u) ∪N(v)〉 contains a component of order n− γns(G).

Suppose |V2| = 1. Let V2 = {v}. Then γnsr = |V1| + 2. Thus γns(G) + 2 − 2 = |V1| which

gives |V1| = γns(G). Then V0 contains n− γns(G) − 1 vertices. Thus 〈N(v)〉 has a component

a component of order n− γns − 1.

Suppose |V2| = 2. Let V2 = {u, v}. Then γnsr = |V1|+4. Thus γns(G)+2−4 = |V1| which

gives |V1| = γns(G) − 2. Hence |V0| = n− |V1| − |V2| = n− (γns(G)− 2)− 2 = n− γns(G) then

the result follows. 2
Corollary 2.22 If T is a nontrivial tree then γnsr(T ) = γns(T )+2 if and only if T has exactly

two support vertices.

Proof Let T be a tree with γnsr(T ) = γns(T ) + 2. Then γns(T ) = n − 2. Let u and v be

the support vertices such that d(u, v) is maximum. Let P (u = u1, u2, · · · , uk = v) be the u− v
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path. Let ui be the vertex lie in both u − w and u − v paths such that i is maximum. Then

V − {ui−1, ui, ui+1} is a nonsplit dominating set which is a contradiction. Hence T contains

exactly two support vertices. The converse is obvious. 2
Now we characterize the upper bound in Theorem 2.3.

Theorem 2.23 Let G be a graph. Then γnsr(G) = 2γns(G) if and only if G has a γnsr−function

f = (V0, V1, V2) with |V1| = 0.

Proof Let f = (V0, V1, V2) be a γnsr−function and |V1| = 0. Then V2 is a nonsplit

dominating set ofG. Suppose, there exists a nonsplit dominating set S of G such that |S| < |V2|.
Then g = (V −S, φ, S) is a nonsplit roman dominating function ofG and hence γnsr(G) ≤ 2|S| <
2|V2| which is a contradiction. Hence V2 is a γns−set of G. Hence γnsr(G) = 2|V2| = 2γns(G).

Conversely we assume that γnsr(G) = 2γns(G). Let S be γns−set of G. Take V0 =

V − S, V1 = φ, V2 = S.Then f = (V0, V1, V2) is a nonsplit roman donating function of G with

w(f) = 2|V2| = 2|S| = 2γns(G). Hence f is a γnsr−function of G with |V1| = 0. 2
Theorem 2.24 Let T be a nontrivial tree. Then γnsr(T ) = 2γns(T ) if and only if T is

isomorphic to H ◦K1 for some tree H.

Proof Let T be a tree with γnsr(T ) = 2γns(T ). Then γns(T ) =
n

2
. Let S be a γns−set of

T . Then |S| =
n

2
, 〈V −S〉 is connected and |V −S| =

n

2
. It is clear that any vertex in S cannot

adjacent to two or more vertices in V − S. If any two distinct vertices of S are adjacent to a

vertex in V − S then at least a vertex in V − S is not dominated by S. Hence T is isomorphic

to H ◦K1 for some tree H . The converse is obvious. 2
Since the graphs P4 and C5 are self complementary, the following result is obvious. Hence

we omit its proof.

Theorem 2.25 Let G be a graph such that both G and G are connected. Then γnsr(G) +

γnsr(G) ≤ 2n and the bound is sharp.

Theorem 2.26 Let G be a graph such that G and G are connected and diam(G) ≥ 5. Then

γnsr(G) + γnsr(G) ≤ n+ 4.

Proof Let S = {u, v}, where d(u, v) = diam(G). Then f = (V − S, φ, S) is a nonsplit

roman dominating function of G so that γnsr(G) ≤ 4 and hence the result follows. 2
Remark 2.27 The bound given in Theorem 2.28 is sharp. The graph G = P6 has diameter 5,

γnsr(G) = 6 and γnsr(G) = 4. Thus γnsr(G) + γnsr(G) = 10 = n+ 4.

Problem 2.28 Characterize graphs which attain the bounds given in Theorems 2.25 and 2.26.
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Abstract: All connected Cayley graphs over Abelian groups are Hamiltonian. However, for

Cayley graphs over non-Abelian groups, Chen and Quimpo prove in [2] that Cayley graphs

over Hamiltonian groups (i.e, non- Abelian groups in which every subgroup is normal) are

Hamiltonian. In this paper we discuss a few of the ideas which have been developed to

establish the existence of Hamiltonian cycles and paths in the vertex induced subgraphs of

Cayley graphs over non-Abelian groups.
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§1. Introduction

Let G be a finite group and S be a non-empty subset of G. The graph Cay(G,S) is defined

as the graph whose vertex set is G and whose edges are the pairs (x, y) such that sx = y for

some s ∈ S and x 6= y. Such a graph is called the Cayley graph of G relative to S. The

definition of Cayley graphs of groups was introduced by Arthur Cayley in 1878 and the Cayley

graphs of groups have received serious attention since then.Finding Hamiltonian cycles in graphs

is a difficult problem,of interest in combinatorics, computer science and applications. In this

paper,we present a short survey of various results in that direction and make some observations.

§2. Preliminaries

In this section deals with the basic definitions of graph theory and group theory which are

needed in sequel. A graph (V,E) is said to be connected if there is a path between any two

vertices of (V,E). Every pair of arbitrary vertices in (V,E) can be joined by an edge,then it

is complete. A subgraph (U,F ) of a graph (V,E) is said to be vertex induced subgraph if F

consists of all the edges of (V,E) joining pairs of vertices of U . A Hamiltonian path is a path

in (V,E) which goes through all the vertices in (V,E) exactly once. A hamiltonian cycle is a

closed Hamiltonian path.A graph is said to be hamiltonian if it contains a hamiltonian cycle.

Let G be a group. The orbit of an element x under G is usually denoted as x̄ and is defined

1Received July 12, 2016, Accepted November 10, 2016.
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as x̄ = {gx/g ∈ G}. Let x be a fixed element of G. The centralizer of an element x in G, CG(x),

is the set of all elements in G that commute with x. In symbols, CG(x) = {g ∈ G/gx = xg}.
The centre of a group is denoted as Z(G) and is defined as Z(G) = {g ∈ G/gx = xg∀x ∈ G}.
A group G acts on G by conjugation means gx = gxg−1 for all x ∈ G. An element x ∈ G is

called an involution if x2 = e, where e is the identity.

Theorem 2.1 Let G be a finite non-Abelian group and G act on G by conjugation. Then for

x ∈ G, the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) is hamiltonian,

provided there exist an element a ∈ x̄, which generates CG(x).

Proof Since a ∈ x̄ which generates CG(x), we have CG(x) = {a, a2, a3, · · · , an = e} and

a 6= e, where e is the identity. Let u ∈ CG(x). Then ux = xu for x ∈ G. Since x̄ is the

orbit of x ∈ G and G act on G by conjugation, we can choose an element s ∈ x̄ such that

s = (ua)a(ua)−1.

Now su = (ua)a(ua)−1u = (ua)a(a−1u−1)u = (ua)aa−1(u−1u) = (ua)aa−1e = (ua)aa−1 =

(ua)e = ua, then there is an edge from u to ua. Again,

s(ua) = (ua)a(ua)−1(ua) = (ua)a(a−1u−1)(ua) = (ua)(aa−1)(u−1u)a = (ua)(ea) = ua2,

then there is an edge from ua to ua2, so there exist a path from u to ua2. Continuing in this

way, we get a path u→ ua→ ua2 → ua3 → · · · → uan = ue = u in the induced subgraph with

vertex set CG(x) of Cay(G, x̄), which is hamiltonian. 2
Example 1 Let G = S5 and let x = (123)(45).From the composition table we have CG(x) =

{(), (45), (123), (132), (123)(45), (132)(45)} and x̄ = {(123)(45), (124)(35), (125)(34), (132)(45),

(134)(25), (135)(24), (142)(35), (143)(25), (145)(23), (152)(34), (153)(24), (154)(23), (15)(234),

(14)(235), (15)(243), (13)(245), (14)(253), (13)(254), (12)(345), (12)(354)}. We observe that ei-

ther (123)(45) or (132)(45) in x̄ generates CG(x). Then, Theorem 2.1 implies that the induced

subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) is hamiltonian and is given in

Figure 1.

(123)(45) () (132)(45)

(132) (45) (123)

Figure 1

Theorem 2.2 Let G be a finite non-Abelian group and G act on G by conjugation. Then for x ∈
G, the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) is Hamiltonian,

provided x̄ contains two involutions a and b which generates CG(x) and they commute.

Proof Since x̄ has two involutions a and b which generates CG(x), we have CG(x) =

{a, b, ab, e}. Let u ∈ CG(x). Then ux = xu for x ∈ G. Since x̄ is the orbit of x ∈ G
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and G act on G by conjugation, we can choose two involutions s1 and s2 in x̄ such that

s1 = (ua)a(ua)−1 and s2 = (ub)b(ub)−1. Now s1u = (ua)a(ua)−1u = (ua)a(a−1u−1)u =

(ua)(aa−1)(u−1u) = ((ua)e)e = ua, so there is an edge from u to ua. Again s2(ua) =

(ub)b(ub)−1ua = (ub)b(b−1u−1)ua = (ub)(bb−1)(u−1u)a = ((ub)e)ea = uba = uab, then

there is an edge from ua to uab, so there exist a path from u to uab. Again s1(uab) =

(ua)a(ua)−1(uab) = (ua)a(a−1u−1)(uab) = (ua)(aa−1)(u−1u)ab = ((ua)e)eab = (ua)ab =

u(aa)b = (ue)b = ub, so there is an edge from uab to ub. Again s2(ub) = (ub)b(ub)−1(ub) =

(ub)be = ub2 = ue = u. Thus we get a Hamiltonian cycle u → ua → uab → ub → u in the

induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄). 2
Example 2 Let G = S4 and let x = (13). From the composition table we have CG(x) =

{(), (13), (24), (13)(24)} and x̄ = {(12), (13), (14), (23), (24), (34))}. We can observe that x̄ has

two involutions (13) and (24) which generates CG(x) and(13)(24)=(24)(13). Then, Theorem

2.2 implies that the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) is

Hamiltonian and is given in Figure 2.

() (13)(24)

(13) (24)

Figure 2

Theorem 2.3 Let G be a finite non-Abelian group and G act on G by conjugation. Then for

x ∈ G, the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) has disjoint

Hamiltonian cycles, provided x̄ has three elements a, b, c which do not generate CG(x) and they

together with identity is isomorphic to V4, the Klein-4 group.

Proof We have {e, a, b, c} ∼= V4, so ab = ba = c, bc = cb = a, ac = ca = b and a, b, c are

involutions. Since x̄ has three elements a, b, c which do not generate CG(x), we see that x 6= e.

To prove that the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) has

disjoint hamiltonian cycles, it is enough to show that there exist at least two closed disjoint

hamiltonian paths in it. Let u ∈ {e, a, b, c}. Since x̄ is the orbit of x ∈ G and G act on G

by conjugation, we can choose two elements s1, s2 ∈ x̄ such that s1 = (ua)a(ua)−1 and s2 =

(ub)b(ub)−1. Now s1u = (ua)a(ua)−1u = (ua)a(a−1u−1)u = (ua)(aa−1)(u−1u) = ((ua)e)e =

ua then there is an edge from u to ua. Again s2(ua) = (ub)b(ub)−1ua = (ub)b(b−1u−1)ua =

(ub)(bb−1)(u−1u)a = ((ub)e)ea = uba = uc then there is an edge from ua to uc,consequently

there exist a path from u to uc. Again s1(uc) = (ua)a(ua)−1(uc) = (ua)a(a−1u−1)(uc) =

(ua)(aa−1)(u−1u)c = ((ua)e)c = uac = ub, so there is an edge from uc to ub and hence

there exist a path from u to ub. Again s2(ub) = (ub)b(ub)−1(ub) = (ub)b(b−1u−1)(ub) =

(ub)(bb−1)(u−1u)b = ((ub)e)b = ubb = ue = u. Thus we get a hamiltonian cycle C1 : u→ ua→
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uc → ub → u in the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄).

In particular, for u = a, we get a hamiltonian cycle a→ e→ b→ c→ a.

Since a, b, c do not generate CG(x), clearly CG(x) contains at least one element u1 /∈ V4.

Now s1u1 = (ua)a(ua)−1u1 = (ua)a(a−1u−1)u1 = (ua)(aa−1)(u−1u1) = (ua)e(u−1u1) =

(ua)(u−1u1). Since u ∈ V4, we have ua = au, then (ua)(u−1u1) = (au)(u−1u1) = a(uu−1)u1 =

(ae)u1 = au1. Clearly au1 /∈ V4. For if au1 ∈ V4, then au1 = u2 ∈ V4, which implies u1 =

a−1u2 ∈ V4, it is a contradiction to our assumption that u1 /∈ V4. So there exist an edge from

u1 to au1. Again s2(au1) = (ub)b(ub)−1(au1) = (ub)b(b−1u−1)(au1) = (ub)(bb−1)u−1(au1) =

(ub)eu−1(au1) = (ub)u−1(au1) = (bu)u−1(au1) = b(uu−1)(au1) = be(au1) = bau1 = cu1,

as above we can show that cu1 /∈ V4. Thus there exist an edge from au1 to cu1 and conse-

quently a path from u1 to cu1. Also s1(cu1) = (ua)a(ua)−1(cu1) = (ua)a(a−1u−1)(cu1) =

(ua)(aa−1)u−1(cu1) = (ua)eu−1(cu1) = (ua)u−1(cu1) = (au)u−1(cu1) = a(uu−1)(cu1) =

ae(cu1) = acu1 = bu1. Here also bu1 /∈ V4, so there is a path from u1 to bu1. Again

s2(bu1) = (ub)b(ub)−1(bu1) =

(ub)b(b−1u−1)(bu1) = (ub)(bb−1)u−1(bu1) = (ub)eu−1(bu1) = (ub)u−1(bu1) = (bu)u−1(bu1) =

b(uu−1)(bu1) = be(bu1) = (bb)u1 = eu1 = u1. Thus we get another hamiltonian cycle

C2 : u1 → au1 → cu1 → bu1 → u1 in the induced subgraph with vertex set CG(x) of the

Cayley graph Cay(G, x̄), which is disjoint from C1. 2
Example 3 Let G = S4 and let x = (12)(34). From the composition table we have CG(x) =

{(), (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)} and x̄ = {(12)(34), (13)(24), (14)(23)}.
We can observe that x̄ has three elements which do not generate CG(x) and they together with

identity is V4 in S4. Then, Theorem 2.3 implies that the induced subgraph with vertex set

CG(x) of the Cayley graph Cay(G, x̄) has disjoint hamiltonian cycles and are given in Figure

3.

(13)(24) (12)() (1324)

(14)(23) (34)(12)(34) (1423)

Figure 3

Theorem 2.4 Let G be a finite non-Abelian group and G act on G by conjugation. Then

for x ∈ G, the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) has two

complete hamiltonian cycles, one with vertex set P1 and other with vertex set P2, provided

CG(x) has a partition (P1, P2), where x̄ generates P1
∼= V4 and P2 is the generating set of P1.

Proof Since P1
∼= V4 and x̄ generates P1, we have P1 = {e, u1, u2, u3}. Then by Theorem

2.3, for every u ∈ P1, we get a hamiltonian cycle C1 : u→ uu1 → uu3 → uu2 → u in the induced

subgraph with vertex set P1 of the Cayley graph Cay(G, x̄). To prove that it is complete, it is
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enough to show that every pair of vertices in P1 has an edge. Let u1 and u2 are two arbitrary

vertices in P1. Since x̄ is the orbit of x ∈ G and G act on G by conjugation, we can choose an

element s ∈ x̄ such that s = (u1u2)(u
−1
1 u2)(u1u2)

−1. Now su1 = (u1u2)(u
−1
1 u2)(u1u2)

−1u1 =

(u1u2)(u
−1
1 u2)(u

−1
2 u−1

1 )u1 = (u1u2)u
−1
1 (u2u

−1
2 )(u−1

1 u1) = (u1u2)u
−1
1 e = (u1u2)u

−1
1

= (u2u1)u
−1
1 = u2(u1u

−1
1 ) = u2e = u2. Thus there exist an edge from u1 to u2 and hence it is

complete.

Since P2 is the generating set of P1, we have P2P2 = P1, P2P1 = P2, P1P2 = P2, P1P1 = P1.

Let u4 ∈ P2. Since x̄ is the orbit of x ∈ G and G act on G by conjugation, we can choose two

elements s1, s2 ∈ x̄ such that s1 = (uu1)u1(uu1)
−1 and s2 = (uu2)u2(uu2)

−1 for u ∈ P1.

Now s1u4 = (uu1)u1(uu1)
−1u4 = (uu1)u1(u

−1
1 u−1)u4 = (uu1)(u1u

−1
1 )u−1u4 = (uu1)eu

−1u4

= (uu1)u
−1u4 = (u1u)u

−1u4 = u1(uu
−1)u4 = u1eu4 = u1u4. Clearly u1u4 /∈ P1, since

P1P2 = P2. So there is an edge from u4 to u1u4.

Again

s2(u1u4) = (uu2)u2(uu2)
−1(u1u4) = (uu2)u2(u

−1
2 u−1)(u1u4)

= (uu2)(u2u
−1
2 )u−1(u1u4) = (uu2)eu

−1(u1u4)

= (u2u)u
−1(u1u4) = u2(uu

−1)u1u4

= u2e(u1u4) = (u2u1)u4 = u3u4,

as above we can show that u3u4 /∈ P1. Thus there is an edge from u1u4 to u3u4 and consequently

a path from u4 to u3u4.

Also

s1(u3u4) = (uu1)u1(uu1)
−1(u3u4) = (uu1)u1(u

−1
1 u−1)(u3u4) = (uu1)(u1u

−1
1 )u−1(u3u4)

= (uu1)eu
−1(u3u4) = (uu1)u

−1(u3u4) = (u1u)u
−1(u3u4)

= u1(uu
−1)(u3u4) = u1e(u3u4) = (u1u3)u4 = u2u4.

Here also u2u4 /∈ P1, so there exist a path from u4 to u2u4.

Again

s2(u2u4) = (uu2)u2(uu2)
−1(u2u4) = (uu2)u2(u

−1
2 u−1)(u2u4)

= (uu2)(u2u
−1
2 )u−1(u2u4) = (uu2)eu

−1(u2u4) = (u2u)u
−1(u2u4)

= u2(uu
−1)(u2u4) = u2e(u2u4) = (u2u2)u4 = eu4 = u4.

Thus we get another hamiltonian cycle C2 : u4 → u1u4 → u3u4 → u2u4 → u4 in the induced

subgraph with vertex set P2 of the Cayley graph Cay(G, x̄), which is disjoint from C1. Let

u4, u5 ∈ P2. We can choose an element s ∈ x̄ such that s = (u4u
−1
5 )(u5u

−1
4 )(u4u

−1
5 )−1. Then

su4 = (u4u
−1
5 )(u5u

−1
4 )(u4u

−1
5 )−1u4 = u4(u

−1
5 u5)u

−1
4 u5(u

−1
4 u4) = (u4e)u

−1
4 u5e = (u4u

−1
4 )u5 =

eu5 = u5. Thus for any two arbitrary elements u4, u5 ∈ P2 is connected by an edge, so the

induced subgraph with vertex set P2 of the Cayley graph Cay(G, x̄) is complete. 2
Example 4 Let G = S5 and let x = (12)(34). From the composition table we have CG(x) =
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{(), (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)} and x̄ = {(12)(34), (12)(35), (12)(45),

(14)(23), (13)(24), (13)(25), (13)(45), (14)(25), (14)(35), (15)(23), (15)(24), (15)(34), (23)(45),

(25)(34), (24)(35)}. We can observe that CG(x) has a partition (P1, P2) where P1 = {(), (12)(34),

(13)(24), (14)(23)}, which is V4 in S5 and P2 is the generating set of P1. Then, Theorem 2.4

implies that the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄) has

two complete Hamiltonian cycles and are given in Figure 4.

(14)(23) (12)() (1423)

(13)(24) (34)(12)(34) (1324)

Figure 4

Theorem 2.5 Let G be a finite non-Abelian group and G act on G by conjugation. Then

for x ∈ G, the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄ ∪ V4) is

complete, provided there exist an element a ∈ x̄, which generates CG(x) and |CG(x)| 6 4.

Proof Since a ∈ x̄ which generates CG(x) with |CG(x)| 6 4, by Theorem 2.1, for u ∈ CG(x)

we get a hamiltonian path u → ua → ua2 → ua3 → ua4 = ue = u in the induced subgraph

with vertex set CG(x) of the Cayley graph Cay(G, x̄). Then clearly the induced subgraph

with vertex set CG(x) of the Cayley graph Cay(G, x̄ ∪ V4) is hamiltonian. Since the graph is

hamiltonian, we know that there exist an edge from uai to uai+1 . To prove that this graph is

complete, it is enough to show that there exist an edge from uai to uai+2 for i = 0, 1. We can

choose an element s ∈ V4 such that s = ua2u−1.Now s(uai) = ua2u−1(uai) = uai+2. So there

exist an edge from uai to uai+2. Thus the graph is complete. 2
Example 5 Let G = S5 and let x = (1423). From the composition table we have CG(x) =

{(), (12)(34), (1423), (1324)} and x̄ = {(1234), (1235), (1245), (1423), (1523), (2345), (1534),

(2534), (1342), (1352), (1452), (1432), (1532), (2453), (1543), (2543), (1354), (1324), (1325), (1345),

(1425), (1435), (1524), (2435), (1254), (1243), (1253), (2354), (1542), (1453)}. We can observe that

either (1423) or (1324) in x̄ generates CG(x) with |CG(x)| 6 4. Then, Theorem 2.5 implies that

the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄ ∪ V4) is complete

and is given in Figure 5.

() (12)(34)

(1423) (1324)

Figure 5
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Theorem 2.6 Let G be a finite non-Abelian group and G act on G by conjugation. Then

for x ∈ G, the induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄ ∪ V4)

is complete, provided there exist two involutions a, b ∈ x̄ satisfy the conditions ab = ba and

(ab)2 = e, which generates CG(x).

Proof Since x̄ contains two involutions a and b which generates CG(x) and ab = ba, by

Theorem 2.2 we get a hamiltonian path u → ua → uab → ub → u in the induced subgraph

with vertex set CG(x) of the Cayley graph Cay(G, x̄). Then clearly the induced subgraph

with vertex set CG(x) of the Cayley graph Cay(G, x̄ ∪ V4) is hamiltonian. To prove that it

is complete, it is enough to show that there exist edges from u to uab and ua to ub . Since

V4 is the klein-4 group, we can choose an element s ∈ V4 such that s = u(ab)u−1. Now

su = u(ab)u−1u = (uab)(u−1u) = uabe = uab, so there is an edge from u to uab.

Similarly s(ua) = u(ab)u−1(ua) = uab(u−1u)a = uab(ea) = u(ab)a = u(ba)a = uba2 =

ube = ub, so there is an edge from ua to ub. Thus the induced subgraph with vertex set CG(x)

of the Cayley graph Cay(G, x̄ ∪ V4) is complete. 2
Example 6 Let G = S4 and let x = (13). By Example 2, we get a hamiltonian cycle in the

induced subgraph with vertex set CG(x) of the Cayley graph Cay(G, x̄). If we add (13)(24) ∈ V4

in x̄, then it makes the graph complete and is given in Figure 6.

() (13)(24)

(13) (24)

Figure 6

Theorem 2.7 Let G be a finite non-Abelian group and G act on G by conjugation. Then for

x ∈ G, where x is not an involution, the induced subgraph with vertex set CG(x) of the Cayley

graph Cay(G, x̄) is hamiltonian provided |CG(x)| 6 5.

Proof Since x is not an involution, we see that x 6= e, where e is the identity. Let u ∈ CG(x).

Then ux = xu for x ∈ G. Since x̄ is the orbit of x ∈ G and G act on G by conjugation, we can

choose an element s = (ux)x(ux)−1 ∈ x̄ such that s ∈ x̄ ∩ CG(x). Now su = (ux)x(ux)−1u =

(ux)x(x−1u−1)u = (ux)xx−1(u−1u) = (ux)xx−1e = (ux)xx−1 = (ux)e = ux. Then there is an

edge from u to ux. Again s(ux) = (ux)x(ux)−1(ux) = (ux)x(e) = (ux)x = ux2, then there is

an edge from ux to ux2 so there exist a path from u to ux2. Continuing in this way, we get a

path from u to uxi for i ∈ N . Since G is finite and x ∈ G, we have uxi = uxj for some i and j.

Now (uxj)x−i = (uxi)x−i = ue = u. Thus the induced subgraph with vertex set CG(x) of the

Cayley graph Cay(G, x̄) is hamiltonian. 2
Example 7 Let G = S5 and let x = (13245). From the composition table we have CG(x) =

{(), (15423), (13245), (12534), (14352)} and x̄ = {(12345), (14532), (12435), (15423), (13245),
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(15324), (15243), (12453), (14325), (15432), (13452), (14523), (15342), (12534), (13425), (14235),

(13542), (15234), (14352), (13254), (12354), (14253), (12543), (13524)}. We observe that x2 6= e

with |CG(x)| 6 5. Then, Theorem 2.7 implies that the induced subgraph with vertex set CG(x)

of the Cayley graph Cay(G, x̄) is hamiltonian and is given in Figure 7.

()

(13245)(15423)

(12534) (14352)

Figure 7

Theorem 2.8 Let G be a finite non-Abelian group and N be a non-trivial normal subgroup of

G. Then Cay( G
N , Z( G

N )) is complete, provided Z( G
N ) 6= e.

Proof Let u, v ∈ G
N with u 6= v. Then u = g1h and v = g2h for g1, g2 ∈ G and h ∈ N . Since

s ∈ Z( G
N ) and Z( G

N ) 6= e, we have an element s = (g−1
1 g2)h ∈ Z( G

N ) such that sx = xs for every

x ∈ Z( G
N ). Now su = (g−1

1 g2)h(g1h) = (g1h)(g
−1
1 g2)h = ((g1g

−1
1 )g2)h = (eg2)h = g2h = v. So

for any two arbitrary vertices u, v in G
N has an edge. Thus the Cayley graph Cay( G

N , Z( G
N )) is

complete. 2
Example 8 LetG = S4. We observe that Cay( G

A4
, Z( G

A4
)) is complete where asCay( G

V4
, Z( G

V4
))

is not, since Z( G
V4

) = e.

Suppose G = D4.We have N = ((), (13)(24)) is a normal subgroup of G with Z(D4

N ) 6= e.

Then, Theorem 2.8 implies that Cay( G
N , Z( G

N )) is complete and is shown in Figure 8.

((13),(24)) ((12)(34),(14)(23))

((),(13)(24)) ((1234),(1432))

Figure 8

References

[1] Bermond J.C.,Hamilton decomposition of graphs, directed graphs and hypergraphs, in:

Advances of Graph Theory, Ann.Discrete Math., 3(1978), 21- 28.

[2] Chen C.C., Quimpo N.F., Hamilton Cycles in Cayley graphs over Hamilton groups, Re-

search Report No.80, Lee Kong Chian Centre for Mathematical Research, National Uni-

versity of Singapore(1983).



A Study on Cayley Graphs of Non-Abelian Groups 87

[3] Chen C.C., On edge-hamiltonian property of Cayley graphs, Discrete Math., 72(1988),

29-33.

[4] Chen C.C., Quimpo N.F., On some classes of Hamiltonian groups, Southeast Asian Bull.Math.,

Special issue (1979), 252-258.

[5] Chen C.C., Quimpo N.F.,On strongly Hamiltonian abelion group graphs, in:K.L.McAvaney,

ed., Combinatorial Mathematics VIII, Lecture Notes in Mathematics, Vol.884, Springer,

Berlin, 1981, 23-34.

[6] Curran S.J., Gallian J.A., Hamiltonian cycles and paths in Cayley graphs and digraphs -

a survey, Discrete Math., 156(1996), 1-18.

[7] Gallai T., On directed paths and circuits, in Theory of Graphs, Proc.Colloq.,Tihany (1966),

115-118, Academic Press, New York, 1968.

[8] Joseph A.Gallian, Contemporary Abstract Algebra, Fourth Edition, Narosa publications.

[9] Witte, D., Gallian,J.A., A survey: hamiltonion cycles in Cayley graphs, Discrete Math.,

f51(1984), 293-304.



International J.Math. Combin. Vol.4(2016), 88-96

On Linear Operators Preserving

Orthogonality of Matrices over Fuzzy Semirings

Yizhi Chen

(Department of Mathematics, Huizhou University, Huizhou, Guangdong, 516007, China)

Jing Tian

(Shcool of Economics and Finance, Xi’an International Studies University, Xi’an, 710128, China)

E-mail: yizhichen1980@126.com, ttianjing@qq.com

Abstract: In this paper, we investigate the linear operators preserving orthogonality of

matrices over fuzzy semirings. We firstly characterize invertible linear operators preserving

orthogonality of fuzzy matrices. And then, based on the obtained results, we study the

invertible linear operators preserving orthogonality of matrices over the direct product of

fuzzy semirings, and give some complete characterizations.

Key Words: Linear operator; orthogonality; fuzzy semirings.

AMS(2010): 15A04, 15A09, 16Y60

§1. Introduction

Let F = [0, 1] be a set of reals between 0 and 1 with addition (+), and multiplication (·) and

the ordinary order ≤ such that

x+ y = max{x, y} andx · y = min{x, y}

for all x, y ∈ F. We call F a fuzzy semiring. For any x, y ∈ F, we omit the dot of x · y and

simply write xy.

Let Mn(F) denote the set of all n×n matrices over F. Define + and · on Mn(F)as follows:

(∀A,B ∈Mn(F)) A+B = [aij + bij ]n×n, A · B = [
n∑

k=1

aikbkj ]n×n.

It is easy to verify that (Mn(F),+, ·) is a semiring with the operations defined above. And

the matrices in (Mn(F),+, ·) are called fuzzy matrices.

Let F be a fuzzy semiring and A ∈ Mn(F). We denote the transpose of A by At and the

entry of A in the ith row and jth column by aij .
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For any A ∈Mn(F) and any λ ∈ F, we define

λA = [λaij ]n×n.

A mapping T : Mn(F) →Mn(F) is called a linear operator if

T (aA+ bB) = aT (A) + bT (B)

for all a, b ∈ F and A,B ∈ Mn(F). Notice that if T is a linear operator on Mn(F), then

T (O) = O.

A,B in Mn(F) are said to be orthogonal (see [?]) if AB = BA = O. Let T be an operator

on Mn(F). We say that T preserves orthogonality if T (A) and T (B) are orthogonal whenever

A and B are orthogonal.

During the past 100 years, one of the most active and fertile subjects in matrix theory

is the linear preserver problem (LPP for short), which concerns the characterization of linear

operators on matrix spaces that leave certain functions, subsets, relations, etc., invariant. The

first paper can be traced down to Frobenius’s work in 1897. Since then, a number of works in

the area have been published. Among these works, although the linear operators concerned are

mostly linear operators on matrix spaces over some fields or rings, the same problem has been

extended to matrices over various semirings.

Many authors have studied the linear operators that preserve invariants of matrices over

semirings. For example, idempotent preservers were investigated by Song, Kang and Beasley

([16]), Dolžan and Oblak ([6]), Orel ([14])et al. Nilpotent preservers were discussed by Song,

Kang and Jun ([19]), Li and Tan ([12]) et al. Regularity preservers were studied by Song, Kang,

Jun, Beasley and Sze in [10] and [21] et al. Pshenitsyna ([15]) considered invertibility preservers.

Besides, Beasley, Guterman, Jun and Song ([1])investigated the linear preservers of extremes of

rank inequalities over semirings, Beasley and Lee([2])studied the linear operators that strongly

preserve r-potent matrices over semirings, Song and Kang ([20]) discussed commuting pairs of

matrices preservers and so on.

The linear preserver problems about orthogonality of matrices are more and more caused

people’s attention. In [17] and [18], Šemrl studied maps on idempotents matrices that preserve

orthogonality over a division ring. Burgos et al. ([3]) studied orthogonality preserving operators

between C∗-algebras, JB∗-algebras and JB∗-triples. Cui, Hou and Park ([5]) described the addi-

tive maps preserving the indefinite orthogonality of operators acting on indefinite inner product

spaces. Also, there are some literature on maps that approximately preserve orthogonality (see

[4],[9] et al).

Note that the researches about linear operators preserving orthogonality of matrices over

semiring are not much, and fuzzy semirings are the ones which have bright background. In

this paper our purpose is to obtain characterizations of invertible linear operators that preserve

orthogonality matrices over fuzzy semirings. In Section 2 we characterize invertible linear

operators preserving orthogonality of fuzzy matrices. Based on the obtained results, we study

the invertible linear operators preserving orthogonality of matrices over the direct product of

fuzzy semirings in Sections 3, and obtain some complete characterizations.
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For notations and terminologies occurred but not mentioned in this paper, the readers are

referred to [8].

§2. Linear Operators Preserving Orthogonality of Fuzzy Matrices

In this section, we will study the complete characterizations of linear operators that preserve

orthogonality of fuzzy matrices.

Let S be a semiring. A matrix P ∈Mn(S) is called a permutation matrix (see [21]) if it has

exactly one entry 1 in each row and each column and 0’s elsewhere. Observe that if P ∈Mn(S)

is a permutation matrix, then PP t = P tP = I.

For each x ∈ F, define

x∗ =





0, if x = 0,

1, if x 6= 0.

Then the mapping

ϕ : F → B1, x 7→ x∗

is a homomorphism. Its entrywise extension to a mapping

ψ : Mn(F) →Mn(B1), A 7→ A∗

preserves sums, products and multiplication by scalars.

It is well known the only invertible matrices in Mn(B1) are permutation matrices (see [20]).

In fact, we can also obtain the following theorem.

Theorem 2.1 The permutation matrices are the only invertible matrices in Mn(F).

Proof Let A ∈Mn(F) be an invertible matrix. Then there exists a matrix B ∈Mn(F) such

that AB = BA = In. This implies A∗B∗ = B∗A∗ = In, and thus A∗ and B∗ are permutation

matrices with B∗ = (A∗)t. Notice that any product of two elements in F is their minimum, the

nonzero entries in A are 1’s. Thus, A is a permutation matrix. 2
Let Ei,j ∈ Mn(F) is the matrix with 1 as its (i, j)-entry and 0 elsewhere. We call such

Ei,j a cell (see [19]) and denote En = {Ei,j |i, j ∈ n}, where n = {1, 2, · · · , n}. By virtue of

definition, for any Ei,j , Ek,l ∈ En, we can easily have that

Ei,jEk,l =





Ei,l, if j = k,

O, otherwise.

From [21], a semiring S with 0 and 1 is said to be commutative if (S, ·, 1) is commutative;

a semiring S is called an antiring if a + b = 0 implies a = b = 0 for any a, b ∈ S, i.e., 0 is the

unique invertible element in (S,+, 0); a semiring S is said to be entire if a 6= 0, b 6= 0 imply

ab 6= 0 for any a, b ∈ S. It is obvious that fuzzy semiring F is a commutative entire antiring.

Lemma 2.2([16]) Let S be a commutative antiring and T a linear operator on Mn(S). Then
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T is invertible if and only if there exist a permutation α on the set {(i, j)|i, j ∈ n} and unit

elements bij ∈ S, i, j ∈ n such that T (Ei,j) = bijEα(i,j).

Lemma 2.2 shows that if T is a linear operator on Mn(S) in which S is a commutative

antiring, then T permutes En with unit scalar multiplication.

Theorem 2.3 Let F be a fuzzy semiring. If T is a linear operator on Mn(F) with n = 1, then

T preserves orthogonality of fuzzy matrices.

Proof Let F be a fuzzy semiring and T a linear operator on Mn(F) with n = 1. Suppose

that A,B ∈ Mn(F) such that A and B are orthogonal. Then, we must have that A = O

or B = O. It follows from the linearity of T that T (O) = O. Furthermore, T (A)T (B) =

T (B)T (A) = O. Hence, T (A) and T (B) are orthogonal. So T preserves orthogonality of fuzzy

matrices. 2
Theorem 2.4 Let F be a fuzzy semiring and T : Mn(F) −→ Mn(F) a linear operator with

n ≥ 2. Then T is an invertible linear operator that preserves orthogonality of fuzzy matrices if

and only if there exists a permutation matrix P ∈ Mn(B1) such that either T (X) = PXP t for

all X ∈Mn(F), or T (X) = PXtP t for all X ∈Mn(F).

Proof (=⇒) Let T be an invertible linear operator on Mn(F) which preserves orthogonality

of fuzzy matrices. Note that fuzzy semiring F is a commutative entire antiring, by the virtue of

Lemma 2.2, there exists a permutation α on the set {(i, j)|i, j ∈ n} such that T (Ei,j) = Eα(i,j).

For any i 6= j, denote T (Ei,j) = Ep,q. If p = q then it follows from Ei,jEi,j = O that

(T (Ei,j))
2 = (Ep,p)

2 = Ep,p = O,

it is a contradiction. Thus, p 6= q. Note that α is a permutation, then there is a permutation

σ of {1, 2, · · · , n} such that T (Ei,i) = Eσ(i),σ(i) for each i = 1, 2, · · · , n.
Define an operator L on Mn(F) by

L(X) = P tT (X)P

for all X ∈ Mn(F), where P is a permutation matrix corresponding to σ such that L(Ei,i) =

Eσ(i),σ(i) for each i = 1, 2, · · · , n.
It is easy to see that L is an invertible linear operator onMn(F) that preserves orthogonality

of matrices. By Lemma 2.2, L permutes En. Therefor, for any cell Er,s in En, there exists

exactly one cell Ep,q in En such that L(Er,s) = Ep,q.

Suppose that r 6= s. Since L is injective, we have p 6= q because L(Ei,i) = Eσ(i),σ(i) for

each i = 1, 2, · · · , n. Assume that p 6= r and p 6= s. Since Er,sEp,p = Ep,pEr,s = O, we have

L(Ep,p)L(Er,s) = Ep,pEp,q = Ep,q = O,

it is a contradiction. Hence, p = r or p = s. Similarly, q = r or q = s. Therefore, for each Er,s
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in En,

L(Er,s) = Er,s, or L(Er,s) = Es,r.

Suppose that L(Er,s) = Er,s for some Er,s ∈ En with r 6= s and L(Er,t) = Et,r for some

t ∈ n with t 6= r, s. It follows form Er,sEr,t = Er,tEr,s = O that

L(Er,t)L(Er,s) = Et,rEr,s = Et,s = O,

it is a contradiction. It follows that if L(Ei,j) = Ei,j for some Ei,j ∈ En with i 6= j, then we

have L(Er,s) = Er,s for all Er,s ∈ En.

Consequently, we have established that L(X) = X or L(X) = Xt for all X ∈Mn(F).

If L(X) = X for all X ∈ Mn(F). By the definition of L, we have

P tT (X)P = X,

or equivalently

T (X) = PXP t

for all X ∈Mn(F).

Similarly, if L(X) = Xt for all X ∈Mn(F), we can get

T (X) = PXtP t.

(⇐=) Suppose that T (X) = PXP t for all X ∈Mn(F). It’s a routine matter to verify that

T is invertible. For any X,Y ∈ Mn(F), if X and Y are orthogonal, then XY = Y X = O. It

follows that

T (X)T (Y ) = T (Y )T (X) = O.

That is to say, T (X) and T (Y ) are orthogonal. Thus, T preserves orthogonality of fuzzy

matrices.

Similarly, if T (X) = PXtP t for all X ∈Mn(F), then T is also an invertible linear operator

preserving orthogonality of fuzzy matrices. 2
Example 2.5 Let

P =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0




ba a matrix in M4(F). Define an operator T on M4(F) by

T (X) = PXtP t

for all X ∈M4(F). By Theorem 2.4, T is an invertible linear operator preserving orthogonality

of fuzzy matrices.
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§3. Linear Operators Preserving Orthogonality of Matrices Over the Direct

Product of Fuzzy Semirings

In this section we will study the invertible linear operators that preserve orthogonality of ma-

trices over the direct product of fuzzy semirings.

Hereafter, let S =
∏

λ∈∧ Sλ, where Sλ = F is a fuzzy semiring for any λ ∈ ∧. For any λ ∈ ∧
and any s ∈ S, we denote s(λ) by sλ. Define

(a+ b)λ = aλ + bλ, (ab)λ = aλbλ (a, b ∈ S, λ ∈ ∧).

It is easy to verify that (S,+, ·) is a semiring with 0 and 1 under the operations defined above.

For any A = [aij ] ∈Mn(S) and any λ ∈ ∧, Aλ := [(aij)λ] ∈Mn(Sλ). It is obvious that

(A+B)λ = Aλ +Bλ, (AB)λ = AλBλ and (sA)λ = sλAλ

for all A,B ∈Mn(S) and all s ∈ S.

By the above definition, it is not hard to obtain the following result.

Lemma 3.1 Let A,B ∈Mn(S). Then the following statements hold:

(i) A = B if and only if Aλ = Bλ for any λ ∈ ∧;

(ii) A and B are orthogonal if and only if Aλ and Bλ are orthogonal for any λ ∈ ∧.

The following lemma is due to Orel [14].

Lemma 3.2 If T : Mn(S) → Mn(S) is a linear operator, then for any λ ∈ ∧, there exists a

unique linear operator Tλ : Mn(Sλ) →Mn(Sλ) such that (T (A))λ = Tλ(Aλ) for any A ∈Mn(S).

Theorem 3.3 Let S =
∏

λ∈∧ Sλ, where Sλ = F is a fuzzy semiring for any λ ∈ ∧. If T is a

linear operator on Mn(S) with n = 1, then T preserves orthogonality of matrices.

Proof Assume that A,B ∈ Mn(S), and A and B are orthogonal. By Lemma 3.1 (ii),

we have Aλ and Bλ are orthogonal for any λ ∈ ∧. It follows from Theorem 2.3 that (T (A))λ

and (T (B))λ are orthogonal. Again by Lemma 3.1 (ii), we obtain that T (A) and T (B) are

orthogonal. Hence T preserves orthogonality of matrices. 2
Proposition 3.4 Let T be a linear operator on Mn(S). Then T is invertible if and only if Tλ

is invertible for any λ ∈ ∧.

Proof (=⇒) Let T be a linear operator on Mn(S). Suppose that T is invertible. For

any λ ∈ ∧ and A,B ∈ Mn(Sλ), there exist X,Y ∈ Mn(S) such that Xλ = A, Yλ = B, and

Xµ = Yµ = O for any µ 6= λ. If Tλ(A) = Tλ(B) then

(T (X))λ = Tλ(A) = Tλ(B) = (T (Y ))λ.

Also,

(T (X))µ = (T (Y ))µ = Tµ(O) = O
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for any µ 6= λ. This shows that T (X) = T (Y ). Since T is injective, we have X = Y . Further,

A = Xλ = Yλ = B.

Thus Tλ is injective.

On the other hand, since T is surjective, there exists Q ∈Mn(S) such that T (Q) = Y . We

can deduce that

B = Yλ = T (Q)λ = Tλ(Qλ).

That is to say, Tλ is surjective. Hence Tλ is invertible.

(⇐=) Assume that Tλ is invertible for any λ ∈ ∧. For any A,B ∈ Mn(S), if T (A) = T (B)

then

Tλ(Aλ) = (T (A))λ = (T (B))λ = Tλ(Bλ).

Since Tλ is injective, we have Aλ = Bλ. By Lemma 3.1 (i) it follows that A = B. So T is

injective. Since Tλ is surjective, there exists Xλ such that Tλ(Xλ) = Bλ. Take A ∈Mn(S) with

Aλ = Xλ for any λ ∈ ∧. It is clear that T (A) = B, and so T is surjective. Thus T is invertible.2
Proposition 3.5 Let T be a linear operator on Mn(S). Then T preserves orthogonality of

matrices if and only if Tλ preserves orthogonality of fuzzy matrices for any λ ∈ ∧.

Proof (=⇒) For any λ ∈ ∧ and any A,B ∈ Mn(F), there exist X,Y ∈ Mn(S) such that

Xλ = A, Yλ = B and Xµ = Yµ = O for any µ 6= λ. If A and B are orthogonal, then XY =

Y X = O. Since T preserves orthogonality of matrices, we have T (X)T (Y ) = T (Y )T (X) = O.

Further,

Tλ(A)Tλ(B) = (T (X))λ(T (Y ))λ = ((T (X)T (Y ))λ = O.

Similarly, Tλ(B)Tλ(A) = O. This shows that Tλ(A) and Tλ(B) are orthogonal. So Tλ preserves

orthogonality of fuzzy matrices as required.

(⇐=) For any X,Y ∈ Mn(S), if X and Y are orthogonal, then Xλ and Yλ are orthogonal

for any λ ∈ ∧ by Lemma 3.1 (i). Since Tλ preserves orthogonality of fuzzy matrices, we have

(T (X))λ(T (Y ))λ = Tλ(Xλ)Tλ(Yλ) = O.

Similarly, (T (Y ))λ(T (X))λ = O. So T (X)λ and T (Y )λ are orthogonal. Again by Lemma 3.1

(ii), we can show that T (X) and T (Y ) are orthogonal. Therefore, T preserves orthogonality of

matrices. 2
In the following, we will give the main theorem of this section.

Theorem 3.6 Let S =
∏

λ∈∧ Sλ, where Sλ = F is a fuzzy semiring for any λ ∈ ∧. Let

T : Mn(S) → Mn(S be a linear operator with n ≥ 2. Then T is an invertible linear operator

preserving orthogonality of matrices if and only if there exist P ∈ Mn(S) and s1, s2 ∈ S such

that

T (X) = P (s1X + s2X
t)P t
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for all X ∈Mn(S), where (s1)λ, (s2)λ ∈ {0, 1}, (s1)λ 6= (s2)λ and Pλ ∈Mn(F) is a permutation

matrix for any λ ∈ ∧.

Proof (=⇒) It follows from Propositions 3.4 and 3.5 that Tλ is an invertible linear operator

preserving orthogonality of matrices. For any X ∈Mn(S), Xλ ∈Mn(F). By virtue of Theorem

2.4, there exists permutation matrix Pλ ∈Mn(F) such that either

Tλ(Xλ) = PλXλP
t
λ (1)

for all Xλ ∈Mn(Sλ), or

Tλ(Xλ) = PλX
t
λP

t
λ (2)

for all Xλ ∈Mn(Sλ). Let ∧1 := {λ ∈ ∧|Tλ is the form of (1)} and ∧2 := {λ ∈ ∧|Tλ is the form

of (2)}. It is clear that ∧1

⋂∧2 = ø,∧1

⋃∧2 = ∧. For i = 1, 2, let si ∈ S, where (si)λ = 1 if

λ ∈ ∧i and 0 otherwise. Thus, for any X ∈ Mn(S), there exist P ∈ Mn(S) and s1, s2 ∈ S such

that

T (X) = P (s1X + s2X
t)P t,

where (s1)λ, (s2)λ ∈ {0, 1}, (s1)λ 6= (s2)λ and Pλ ∈ Mn(F) is a permutation matrix for any

λ ∈ ∧.

(⇐=) For any λ ∈ ∧ and any A ∈Mn(Sλ), there exists X ∈Mn(S) such that A = Xλ. We

have

Tλ(A) = Tλ(Xλ) = (T (X))λ = (P (s1X + s2X
t)P t)λ.

If (s1)λ = 1, (s2)λ = 0, then Tλ(A) = PλAP
t
λ for any A ∈Mn(Sλ). Otherwise, Tλ(A) = PλA

tP t
λ

for any A ∈ Mn(Sλ). It follows from Theorem 2.4 that Tλ is an invertible linear operator

preserving orthogonality. Hence T is an invertible linear operator preserving orthogonality of

matrices by Propositions 3.4 and 3.5. 2
Thus we have obtained complete characterizations of invertible linear operators preserving

orthogonality of matrices over the direct product of fuzzy semirings by Theorems 3.3 and 3.6.

Example 3.7 Let S = F × F × F. Take

P =




(0, 1, 1) (1, 0, 0) (0, 0, 0)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(0, 0, 0) (0, 0, 1) (1, 1, 0)


 ∈M3(S)

and s1 = (0, 1, 0), s2 = (1, 0, 1) in S. Define an operator on M3(S) by

T (X) = P (s1X + s2X
t)P t

for all X ∈M3(S).

It is obvious that Pλ(λ = 1, 2, 3) are all permutation matrices. Thus, by Theorem 3.6, T

is an invertible linear operator that preserves orthogonality of matrices over S.
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§1. Introduction

Let G = (V,E) be a connected simple graph. The distance between two vertices u and v in

G, denoted by d
G
(u, v) is the length of a shortest path between u and v in G. The degree of

a vertex u in G, denoted by d
G
(u) is the number of vertices that are adjacent to u in G. The

Wiener index W (G) of a graph G is a distance based graph invariant introduced by H. Wiener

[18] in order to determine the boiling point of paraffin. It is defined as the sum of distance

between all pairs of vertices in G. i.e., W (G) =
∑

{u,v}⊆V (G)
d

G
(u, v). The degree distance index

DD(G) and Gutman index Gut(G) of a graph are weighted versions of Wiener index, which

are defined as follows:

DD(G) =
∑

{u,v}⊆V (G)

(dG(u) + dG(v))dG(u, v)

and

Gut(G) =
∑

{u,v}⊆V (G)

dG(u) dG(v) dG(u, v).

The degree distance index which is a degree distance based graph invariant, was introduced

independently by A. A. Dobrynin, A. A. Kochetova [6] and I. Gutman [10]. The Gutman

index, earlier known as Schultz index of the second kind was introduced in 1994 by Gutman

[10]. It may be noted that if G is a tree on n vertices, then the Wiener index, degree distance

index and Gutman index are closely related by the identities DD(G) = 4W (G)− n(n− 1) and

1Received December 9, 2015, Accepted November 15, 2016.
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Gut(G) = 4W (G) − (2n− 1)(n− 1). More details about Wiener index and its variants can be

found in [2, 3, 4, 5, 6, 7, 12, 14, 17] and the references cited therein.

The corona [9] of two graphs G1 and G2 is the graph obtained by taking one copy of G1,

|V (G1)| copies of G2 and joining each i-th vertex of G1 to every vertex in the i-th copy of

G2. The neighborhood corona [13] of two graphs G1 and G2 denoted by G1 ∗ G2, is a variant

of corona of two graphs and is defined as the graph obtained by taking one copy of G1 and

|V (G1)| copies of G2, and joining every neighbour of the i-th vertex of G1 to every vertex in

the i-th copy of G2. Recently, various graph invariants of corona product of two graphs have

been studied, for example, see [1, 15, 19].

Example 1.1 The neighborhood corona P3 ∗ P2.

Fig. 1. P3 ∗ P2.

In this paper, we compute Wiener index, degree distance index and Gutman index of

G1 ∗G2.

§2. Main Results

Let G1 be a graph with vertex set V (G1) = {v1, v2, · · · , vn1}, edge E(G1) = {e1, e2, · · · , em1}
and let G2 be a graph with vertex set V (G2) = {u1, u2, · · · , un2} and edge set E(G2) =

{e′1, e′2, · · · , e′m2
}. We denote the vertex set of the i-th copy ofG2 by Vi(G2) = {ui1, ui2, · · · , uin2}.

To prove our main results we need the following definitions and two lemmas whose proofs

follows directly by the definition of neighborhood corona.
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Definition 2.1 For a graph G, we define

E∆(G) := {e ∈ E(G) : e is contained in a triangle of G},

T1(G) :=
∑

uv∈E∆(G)

d(u) + d(v) and T2(G) :=
∑

uv∈E∆(G)

d(u)d(v).

Clearly, if G has a vertex v of degree of |V (G)| − 1 and G− v is connected graph with at

least two vertices, then E∆(G) = E(G), T1(G) = M1(G) and T2(G) = M2(G).

Lemma 2.2 Let G = G1 ∗G2. Then

d
G
(x) =






(n2 + 1)d
G1

(x), if x ∈ V (G1),

d
G2

(x) + dG1(vi), if x ∈ Vi(G2).

Lemma 2.3 If G = G1 ∗G2, then

(1) dG(vi, vj) = d
G1

(vi, vj), ∀ vi, vj ∈ V (G1);

(2) dG(uij , uik) =






1, if ujuk ∈ E(G2),

2, if ujuk /∈ E(G2).

;

(3) for i 6= k, dG(uij , ukm) =






3, if vivk ∈ E(G1) and vivk /∈ E∆(G1),

2, if vivk ∈ E∆(G1),

dG1(vi, vk), if vivk /∈ E(G1).

;

(4) d
G
(uij , vk) =





dG1(vi, vk), if vi 6= vk,

2, if vi = vk.

.

Theorem 2.4 The Wiener index of G = G1 ∗G2 is given by

W (G) = (n2 + 1)2W (G1) + n1(n2(n2 − 1) −m2) + n2
2(2m1 − |E∆(G1)|) + 2n1n2.

Proof We know that

W (G) =
∑

{x, y}⊆V (G)

d
G
(x, y) = A1 +A2 +A3 +A4, (2.1)
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where

A1 =
∑

{vi,vj}⊆V (G1)

d
G
(vi, vj),

A2 =
∑

vi∈V (G1)

∑

{u
ij

,u
ik

}⊆Vi(G2)

d
G
(u

ij
, u

ik
),

A3 =
∑

{vi,vj}⊆V (G1)

∑

u
ik

∈Vi(G2)

u
jm

∈Vj(G2)

d
G
(u

ik
, u

jm
)

and A4 =
∑

vi∈V (G1)

∑

u
ij

∈Vi(G2)

vk∈V (G1)

d
G
(u

ij
, vk).

By Lemma 2.3, we have

A1 =
∑

{vi, vj}⊆V (G1)

d
G
(vi, vj) =

∑

{vi,vj}⊆V (G1)

d
G1

(vi, vj) = W (G1), (2.2)

A2 =
∑

vi∈V (G1)

∑

{u
ij

,u
ik

}⊆Vi(G2)

d
G
(u

ij
, u

ik
)

=
∑

vi∈V (G1)





∑

{u
ij

,u
ik

}⊆Vi(G2)

2 −
∑

u
j

u
k
∈E(G2)

1





=
∑

vi∈V (G1)

(n2(n2 − 1) −m2) = n1(n2(n2 − 1) −m2), (2.3)

A3 =
∑

{vi, vj}⊆V (G1)

∑

uik∈Vi(G2)
ujm∈Vj (G2)

d
G
(uik, ujm)

= n2
2





∑

{vi, vj}⊆V (G1)

d
G1

(vi, vj) +
∑

vivj∈E(G1)

2 −
∑

vivj∈E∆(G1)

1





= n2
2(W (G1) + 2m1 − |E∆(G1)|) (2.4)

and

A4 =
∑

vi∈V (Gi)






∑

uij∈Vi(G2)

vk∈V (G1)
vk 6=vi

dG(vk, uij) +
∑

uij∈Vi(G2)

2






= n2

∑

vi∈V (G1)

∑

vk∈V (G1)

d
G1

(vi, vk) + 2n1n2

= 2n2W (G1) + 2n1n2. (2.5)
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Applying (2.2), (2.3), (2.4) and (2.5) in (2.1), we obtain the desired result. 2
Corollary 2.5 If G1 is a triangle free graph, then the Wiener index of G = G1 ∗G2 is given by

W (G) = (n2 + 1)2W (G1) + n1(n2(n2 − 1) −m2) + 2n2
2m1 + 2n1n2.

Corollary 2.6 If G1 = H1 ∨H2 (join of two connected graphs H1 and H2 with |V (H1)| > 2),

then the Wiener index of G = G1 ∗G2 is given by

W (G) = (n2 + 1)2W (G1) + n1(n2(n2 − 1) −m2) + n2
2m1 + 2n1n2.

Lemma 2.7([4]) Let Pn and Cn denote the path and cycle on n vertices, respectively. Then

W (Pn) =
n(n2 − 1)

6

and

W (Cn) =





n3/8, if n is even,

n(n2 − 1)/8, if n is odd.

Applying the above lemma in Theorem 2.4, we obtain the following corollary.

Corollary 2.8 (1) W (Pn ∗ Pm) =
1

6
((m+ 1)2n3 + (17m2 − 2m+ 5)n) − 2m2;

(2) W (C2n ∗ Cm) = ((m+ 1)2n2 + 6m2)n;

(3) For n 6= 1, W (C2n+1 ∗Cm) = (2n+ 1)(m2n2 +m2n+ 2mn2 + 6m2 + 2mn+ n2 + n)/2;

(4) For n 6= 1, W (C2n+1 ∗Pm) = (2n+1)(m2n2+m2n+2mn2+6m2+2mn+n2+n+2)/2;

(5) W (C2n ∗ Pm) = m2n3 + 2mn3 + 6m2n+ n3 + 2n;

(6) W (Pn ∗ Cm) =
1

6
((m+ 1)2n3 + (17m2 − 2m− 1)n) − 2m2.

The first and second Zagreb indices of a graph denoted by M1(G) and M2(G), respectively,

are degree based topological indices introduced by Gutman and N. Trinajstić ([11]). These two

indices are defined as

M1(G) =
∑

ei=vlvm∈E(G)

dG(vl) + dG(vm) =
∑

vi∈G

d2
G(vi)

and

M2(G) =
∑

ei=vlvm∈E(G)

dG(vl)dG(vm).
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Now, we derive a formula for DD(G1 ∗G2) in terms of degree distance of G1, Wiener index

of G1 and first Zagreb index of G1 and G2.

Theorem 2.9 The degree distance index of G = G1 ∗G2 is given by

DD(G) = (2n2
2 + 3n2 + 1)DD(G1) + 4m2(n2 + 1)W (G1) + n2

2(2M1(G1) − T1(G1))

− n1M1(G2) + (8n2
2 + (8m2 + 4)n2 − 4m2)m1 + 4m2n2(n1 − |E∆(G1)|).

Proof We know that

DD(G) =
∑

{x,y}⊆V (G)

(d
G
(x) + d

G
(y)) d

G
(x, y) = A1 +A2 +A3 +A4, (2.6)

where

A1 =
∑

{vi, vj}⊆V (G1)

(d
G
(vi) + d

G
(vj)) dG

(vi, vj),

A2 =
∑

vi∈V (G1)

∑

{uij ,uik}⊆Vi(G2)

[d
G
(uij) + d

G
(uik)] d

G
(uij , uik),

A3 =
∑

{vi,vj}⊆V (G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

[d
G
(uik) + d

G
(ujm)] d

G
(uik, ujm)

and A4 =
∑

vi∈V (G1)

∑
uij∈Vi(G2)

vk∈V (G1)

[d
G
(uij) + d

G
(vk)]d

G
(uij , vk).

Applying Lemmas 2.2 and 2.3, we compute A1, A2, A3 and A4 as follows:

A1 =
∑

{vi, vj}⊆V (G1)

(d
G
(vi) + d

G
(vj)) dG

(vi, vj)

= (n2 + 1)
∑

{vi, vj}⊆V (G1)

(d
G1

(vi) + d
G1

(vj)) dG1
(vi, vj)

= (n2 + 1)DD(G1). (2.7)

A2 =
∑

vi∈V (G1)

∑

{uij ,uik}⊆Vi(G2)

[dG(uij) + d
G
(uik)] d

G
(uij , uik)

=
∑

vi∈V (G1)



2

∑

{uij ,uik}⊆Vi(G2)

[2d
G1

(vi) + d
G2

(uj) + d
G2

(uk)]

−
∑

ujuk∈E(G2)

[2d
G
(vi) + d

G2
(uj) + d

G2
(uk)]





=
∑

vi∈V (G1)

{2(n2(n2 − 1)d
G1

(vi) + 2(n2 − 1)m2) − 2m2dG
(vi) −M1(G2)}

= 4(n2(n2 − 1) −m2)m1 + 4n1m2(n2 − 1) − n1M1(G2). (2.8)
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A3 =
∑

{vi, vj}⊆V (G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

[d
G

(uik) + d
G

(ujm)] d
G

(uik, ujm)

=
∑

{vi,vj}⊆V (G1)

d
G1

(vi, vj)
∑

uik∈Vi(G2)

ujm∈Vj(G2)

[d
G1

(vi) + d
G1

(vj) + d
G2

(uik) + d
G2

(ujm)]

+ 2
∑

vivj∈E(G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

[dG1
(vi) + dG1

(vj) + dG2
(uik) + dG2

(ujm)]

−
∑

vivj∈E∆(G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

[dG1
(vi) + dG1

(vj) + dG2
(uik) + dG2

(ujm)]

=
∑

{vi,vj}⊆V (G1)

d
G1

(vi, vj) [n2
2(dG1

(vi) + d
G1

(vj)) + 4n2m2]

+ 2
∑

vivj∈E(G1)

[n2
2(dG1

(vi) + dG1
(vj)) + 4n2m2]

−
∑

vivj∈E∆(G1)

[n2
2(dG1

(vi) + d
G1

(vj)) + 4n2m2]

= n2
2DD(G1) + 4n2m2W (G1) + n2

2(2M1(G1) − T1(G1)) + 4n2m2(2m1 − |E∆(G1)|). (2.9)

A4 =
∑

vi∈V (G1)

∑

uij∈Vi(G2)

vk∈V (G1)

[dG(uij) + dG(vk)]dG(uij , vk)

=
∑

vi∈V (G1)





∑

uij∈Vi(G2)

vk∈V (G1)

vi 6=vk

[dG(uij) + dG(vk)]dG(uij , vk) + 2
∑

uij∈Vi(G2)

(dG(uij) + dG(vi))





=
∑

vi∈V (G1)





∑

vk∈V (G1)

(n2d
G1

(vi) + n2(n2 + 1)d
G1

(vk) + 2m2)d
G1

(vi, vk) + 2[2m2 + n2(n2 + 2)d
G

(vi)]






= (n2
2 + 2n2)DD(G1) + 4m2W (G1) + 4n1m2 + 4m1(n2 + 2)n2. (2.10)

Applying (2.7), (2.8), (2.9) and (2.10) in (2.6), we obtain the desired result. 2
Corollary 2.10 If G1 is a triangle free graph, then the degree distance index of G = G1 ∗G2

is given by

DD(G) = (2n2
2 + 3n2 + 1)DD(G1) + 4m2(n2 + 1)W (G1) + 2n2

2M1(G1)

− n1M1(G2) + (8n2
2 + (8m2 + 4)n2 − 4m2)m1 + 4m2n2n1.

Corollary 2.11 If G1 = H1 ∨H2 (join of two connected graphs H1 and H2 with |V (H1)| > 2),
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then the degree distance index of G = G1 ∗G2 is given by

DD(G) = (2n2
2 + 3n2 + 1)DD(G1) + 4m2(n2 + 1)W (G1) + n2

2M1(G1)

− n1M1(G2) + (2n2
2 + (m2 + 1)n2 −m2)4m1 + 4m2n2n1.

Lemma 2.12([7,16]) Let Pn and Cn denote the path and cycle on n vertices, respectively. Then

DD(Pn) =
n(n− 1)(2n− 1)

3

and

DD(Cn) =





n3/2, if n is even,

n(n2 − 1)/2, if n is odd.

Using Lemmas 2.7, 2.12 and also the facts that M1(Pn) = 4n − 6 (n > 2),M2(Pn) =

4n− 8 (n > 3), M1(Cn) = M2(Cn) = 4n in Theorem 2.9, we obtain the following corollary.

Corollary 2.13 (1) DD(Pn ∗ Pm) = (2n3 − 2n2 + 28n− 28)m2 + (2n3 − 3n2 − 15n+ 8)m −
n2 + 11n− 4;

(2) DD(C2n ∗ Cm) = 4n(3m2n2 + 4mn2 + 14m2 + n2 − 2m);

(3) for n 6= 1, DD(C2n+1 ∗Cm) = 2(2n+ 1)(3m2n2 + 3m2n+ 4mn2 + 14m2 + 4mn+n2 −
2m+ n);

(4) for n 6= 1, DD(C2n+1∗Pm) = 2(2n+1)(3m2n2+3m2n+3mn2+14m2+3mn−8m+5);

(5) DD(C2n ∗ Pm) = 4n(3m2n2 + 3mn2 + 14m2 − 8m+ 5);

(6) DD(Pn ∗Cm) =
1

3
((6m2 +8m+2)n3− (6m2 +9m+3)n2 +(84m2−11m+1)n)−28m2.

Now, we derive a formula for Gut(G1 ∗ G2) in terms of degree distance of G1, Gutman

index of G1, Wiener index of G1 and Zagreb indices of G1 and G2.

Theorem 2.14 The Gutman index of G = G1 ∗G2 is given by

Gut(G) = (2n2 + 1)2Gut(G1) + 2m2(2n2 + 1)DD(G1) + 4m2
2W (G1) − (n1 + 2m1)M1(G2)

− n1M2(G2) + (n2(3n2 + 4m2 + 1) −m2)M1(G1) + n2
2(2M2(G1) − T2(G1))

− 2n2m2T1(G1) − 4m2
2|E∆(G1)| + 8m1m2[2n2 +m2] + 4n1m

2
2.

Proof Notice that

Gut(G) =
∑

{x,y}⊆V (G)

(d
G
(x) d

G
(y)) d

G
(x, y) = A1 +A2 +A3 +A4, (2.11)
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where

A1 =
∑

{vi,vj}⊆V (G1)

d
G
(vi) dG

(vj)) dG
(vi, vj),

A2 =
∑

vi∈V (G1)

∑

{uij ,uik}⊆Vi(G2)

d
G
(uij) dG

(uik) d
G
(uij , uik),

A3 =
∑

{vi,vj}⊆V (G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

d
G
(uik) d

G
(ujm) d

G
(uik, ujm)

and A4 =
∑

vi∈V (G1)
dv
dx

∑
uij∈Vi(G2)

vk∈V (G1)

d
G
(uij) dG

(vk) d
G
(uij , vk).

Applying Lemmas 2.2 and 2.3, Ai(i = 1, 2, 3, 4) can be computed as follows:

A1 =
∑

{vi, vj}⊆V (G1)

dG(vi) dG(vj) dG(vi, vj)

= (n2 + 1)2
∑

{vi, vj}⊆V (G1)

[d
G1

(vi) d
G1

(vj)] d
G1

(vi, vj) = (n2 + 1)2Gut(G1), (2.12)

A2 =
∑

vi∈V (G1)

∑

{uij, uik}⊆Vi(G2)

d
G

(uij) d
G

(uik) d
G

(uij , uik)

=
∑

vi∈V (G1)




2
∑

{uij , uik}⊆Vi(G2)

d
G

(uij) d
G

(uik) −
∑

ujuk∈E(G2)

d
G

(uij) d
G

(uik)






=
∑

vi∈V (G1)



2

∑

{uij , uik}⊆Vi(G2)

[d
G2

(uij) d
G2

(uik) + d
G1

(vi) (d
G2

(uij) + d
G2

(uik)) + d2
G(vi)]

−
∑

ujuk∈E(G2)

(dG2
(uij) dG2

(uik) + dG1
(vi) [dG2

(uij) + dG2
(uik)] + d2

G(vi))





=
∑

vi∈V (G1)

{
4m2

2 − M1(G2) + 4(n2 − 1)m2dG1
(vi) + n2(n2 − 1)d2

G
(vi)

−M2(G2) − d
G

(vi)M1(G2) − m2d
2
G

(vi)
}

= n1(4m2
2 − M2(G2)) − (n1 + 2m1)M1(G2) + 8m1m2(n2 − 1) + (n2(n2 − 1) − m2)M1(G1),

(2.13)

A3 =
∑

{vi, vj}⊆V (G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

d
G

(uik) d
G

(ujm) d
G

(uik, ujm)

=
∑

{vi, vj}⊆V (G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

d
G

(uik) d
G

(ujm) d
G1

(vi, vj)

+ 2
∑

vivj∈E(G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

dG(uik) dG(ujm) −
∑

vivj∈E∆(G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

dG(uik) dG(ujm)
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=
∑

{vi,vj}⊆V (G1)

d
G1

(vi, vk)
∑

uik∈Vi(G2)

ujm∈Vj(G2)

[d
G1

(vi) + d
G2

(uk)] [d
G1

(vj) + d
G2

(um)]

+ 2
∑

vivj∈E(G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

[d
G1

(vi) + d
G2

(uk)] [d
G1

(vj) + d
G2

(um)]

−
∑

vivj∈E∆(G1)

∑

uik∈Vi(G2)

ujm∈Vj(G2)

[dG1
(vi) + dG2

(uk)] [dG1
(vj) + dG2

(um)]

=
∑

{vi,vj}⊆V (G1)

d
G1

(vi, vk)
{

n2
2dG1

(vi)dG1
(vj) + 2n2m2(dG1

(vi) + d
G1

(vj)) + 4m2
2

}

+ 2
∑

vivj∈E(G1)

{
n2

2dG1
(vi)dG1

(vj) + 2n2m2 (d
G1

(vi) + d
G1

(vj)) + 4m2
2

}

−
∑

vivj∈E∆(G1)

{
n2

2dG1
(vi)dG1

(vj) + 2n2m2 (dG1
(vi) + dG1

(vj)) + 4m2
2

}

= n2
2Gut(G1) + 2n2m2DD(G1) + 4m2

2W (G1) + n2
2(2M2(G1) − T2(G1))

+ 2n2m2(2M1(G1) − T1(G1)) + 4m2
2(2m1 − |E∆(G1)|). (2.14)

A4 =
∑

vi∈V (G1)





∑

uij∈Vi(G2)

vk∈V (G1)

vi 6=vk

dG(uij) dG(vk) dG1
(vi, vk) + 2

∑

uij∈Vi(G2)

dG(uij) dG(vi)





= (n2 + 1)
∑

vi∈V (G1)





∑

vk∈V (G1)

dG1
(vi, vk) dG1

(vk) (2m2 + n2 dG1
(vi))

+2 (n2d
2
G1

(vi) + 2m2 dG1
(vi))

}

= 2(n2 + 1)(m2DD(G1) + n2Gut(G1) + n2M1(G1) + 4m1m2). (2.15)

Using (2.12), (2.13), (2.14) and (2.15) in (2.11), we obtain the required result. 2
Corollary 2.15 If G1 is a triangle free graph, then the Gutman index of G = G1 ∗G2 is given

by

Gut(G) = (2n2 + 1)2Gut(G1) + 2m2(2n2 + 1)DD(G1) + 4m2
2W (G1)

− (n1 + 2m1)M1(G2) − n1M2(G2) + (n2(3n2 + 4m2 + 1) −m2)M1(G1)

+ 2n2
2M2(G1) + 8m1m2[2n2 +m2] + 4n1m

2
2.

Corollary 2.16 If G1 = H1 ∨H2 (join of two connected graphs H1 and H2 with |V (H1)| > 2),

then the Gutman index of G = G1 ∗G2 is given by
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Gut(G) = (2n2 + 1)2Gut(G1) + 2m2(2n2 + 1)DD(G1) + 4m2
2W (G1)

− (n1 + 2m1)M1(G2) − n1M2(G2) + (n2(3n2 + 2m2 + 1) −m2)M1(G1)

+ n2
2M2(G1) + 4m1m2[4n2 +m2] + 4n1m

2
2.

Lemma 2.17([8]) Let Pn and Cn denote the path and the cycle on n vertices, respectively.

Then

Gut(Pn) = (n− 1)(2n2 − 4n+ 3)/3

and

Gut(Cn) =





n3/2, if n is even,

n(n2 − 1)/2, if n is odd.

Applying Lemmas 2.7, 2.12 and 2.17 in Theorem 2.14, we obtain the following corollary.

Corollary 2.18 (1) For n,m > 3, Gut(Pn ∗Pm) = (6n3 − 12n2 + 74n− 86)m2 − (6n2 + 62n−
60)m+ 43n− 27;

(2) Gut(C2n ∗Cm) = 4n(9m2n2 + 6mn2 + 32m2 + n2 − 8m);

(3) For n 6= 1, Gut(C2n+1 ∗Cm) = 2(2n+ 1)(9m2n2 + 9m2n+ 6mn2 + 32m2 + 6mn+n2−
8m+ n);

(4) For n 6= 1, Gut(C2n+1 ∗ Pm) = 2(2n+ 1)(9m2n2 + 9m2n+ 32m2 − 36m+ 21);

(5) Gut(C2n ∗ Pm) = 4n(9m2n2 + 32m2 − 36m+ 21);

(6) Gut(Pn ∗ Cm) = 6(m + 1/3)2n3 − 1

3
((36m2 + 30m + 6)n2 + (222m2 − 18m + 7)n) −

86m2 + 4m− 1.
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§1. Introduction

A simple graph is a pair G = (V,E), where V = V (G) and E = E(G) are the sets of vertices

and edges of G, respectively. A path is a walk that does not include any vertex twice, except

that its first vertex might be the same as its last. A path with length n denotes by Pn. In a

graph G, the distance between two distinct vertices x and y, denoted by d(x, y), is the length

of the shortest path connecting x and y, if such a path exists: otherwise, we set d(x, y) = ∞.

The diameter of a graph G is diam(G) = sup{d(x, y) : xand y are distinct vertices of G}. A

walk is an alternating sequence of vertices and connecting edges. Also, a cycle is a path that

begins and ends on the same vertex. A cycle with length n denotes by Cn. A graph G is said

to be connected if there exists a path between any two distinct vertices, and it is complete if it

is connected with diameter one. We use Kn to denote the complete graph with n vertices. For

a positive integer r, a complete r-partite graph is one in which each vertex is joined to every

vertex that is not in the some subset. The complete bipartite graph with part sizes m and n

is denoted by Km,n. The graph K1,n−1 is called a star graph in which the vertex with degree

n− 1 is called the center of the graph. For any graph G, we denote

N [x] = {y ∈ V (G) : (x, y) is an edge of G} ∪ {x}.

Recall that the projective dimension of an R-module M , denoted by pd(M), is the length

of the minimal free resolution of M , that is,

1Received February 19, 2016, Accepted November 16, 2016.
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pd(M) = max{i | βi,j(M) 6= 0 for some j}.

There is a strong connection between the topology of the simplicial complex △ and the

structure of the free resolution of K[△]. Let βi,j(△) denotes the N-graded Betti numbers of

the Stanley-Reisner ring K[△]. To any finite simple graph G with the vertex set V (G) =

{x1, · · · , xn} and the edge set E(G), one can attach an ideal in the Polynomial rings R =

K[x1, · · · , xn] over the field K, whose generators are square-free quadratic monomials xiyj such

that (xi, yj) is an edge of G. This ideal is called the edge ideal of G and will be denoted by

I(G). Also the edge ring of G, denoted by K(G) is defined to be the quotient ring K(G) =

R/I(G). Edge ideals and edge rings were first introduced by Villarreal [11] and then they have

been studied by many authors in order to examine their algebraic properties according to the

combinatorial data of graphs. The most important Algebraic objects among these are Betti

numbers and positive dimension. The aim of this paper is to investigate the above mentioned

algebraic properties of (G)i, where (G)i is a graph such that to every vertex adds i pendent

edges. In this paper, we denote Sn for a star graph with n+ 1 vertices.

§2. The Projective Dimension of Some Graphs

In this section, we study the projective dimension of some graphs. We begin this section with

the following results.

Proposition 2.1([6], Proposition 2.2.8) If G is the disjoint union of the two graphs G1 and

G2, then pd(G) = pd(G1) + pd(G2).

Corollary 2.2([6, Corollary 2.2.9]) Let components are G1, · · · , Gm. Then the projective

dimension of G is the sum of the projective dimensions of G1, · · · , Gm, i.e pd(G) = Σm
i=1pd(Gi).

Throughout this section, v will denote a vertex of T which has all but at most one of its

neighbours of degree 1 ( and if it has exactly one neighbour then that neighbour also has degree

1 ). The neighbours of v will be denoted v1, · · · , vn such that v1, · · · , vn−1 all have degree 1.

Also the neighbours of vn other than v will be denoted by w1, · · · , wm.

Let T denoted a forest and let T
′

denote the subgraph of T which is obtained by deleting

the vertex v1 and let T
′′

denote the subgraph 0f T which is obtained by deleting the vertices

v, v1, · · · , vn. That is, T
′

= T \T {v1} and T
′′

= T \ {v, v1, · · · , vn}. Note that T
′

and T
′′

must

both be forests.

Theorem 2.3([6, Theorem 9.4.17]) Let p = pd(T), p
′

= pd(T
′

) and p
′′

= pd(T
′′

). Then

projective dimension of the forest T is equal to p = max{p′

, p
′′

+ n}.

Theorem 2.4([6, Theorem 4.2.6]) If G is a graph such that Gc is disconnected, then pd(G) =

|V(G)| − 1.

Lemma 2.5([3, Lemma 3.2]) Let x be a vertex of a graph G. Then pd(G) ≤ max{pd(G −
N[x]) + deg(x), pd(G − {x}) + 1}.
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Lemma 2.6([3, Observation 4.5]) The maximum size of a minimal vertex cover of G equals

BigHeight(I(G)).

In the following proposition, we investigate the projective dimension of graph G such that

G is the graph obtained from Sn by adding i pendant edges to each vertex.

Proposition 2.7 If G is the graph obtained from Sn by adding i pendant edges to each vertex,

then pd(G) = ni+ 1.

Proof Let the set {u0, u1, · · · , un} be vertex set of Sn and the set {uj1 , uj2 , · · · , uji
} be

the leaves the adjacent with vertex ui for 0 ≤ j ≤ n. Then, by Theorem ??, we have

pd(G) = max{pd(G− {u1}), pd(G− {u11 , u12 , · · · , u1i
, u1, u0}) + i+ 1}.

Also, Theorem 2.4 and Corollary 2.2,

pd(G− {u11, u12 , · · · , u1i
, u1, u0}) + i+ 1} = (n− 1)i.

By reusing of Theorem 2.3,

pd(G− {u11} = max{pd(G− {u11 , u12}), ni}.

So we have,

pd(G) = max{pd(G− {u11, u12}), ni+ 1}.

Continuing this process we have,

pd(G) = max{pd(G− {u11 , u12 , · · · , u1i
}), ni+ 1}.

Now, let G1 = G− {u11 , u12 , · · · , u1i
}. Then with the use of Lemma 2.5, we obtain,

pd(G1) ≤ max{pd(G1 −N [u0]) + deg(u0), pd(G1 − {u0}) + 1}.

Since pd(G1 −N [u0]) = 0, deg(u0) = n+ i, we have,

pd(G1) ≤ max{mi+ n, (n− 1)i+ 1}.

Hence pd(G) = ni+ 1. This completes the proof. 2
In the next proposition, we study the projective dimension of graph G such that G is the

graph obtained from Km,n by adding i pendant edges to each vertex.

Proposition 2.8 If G is the graph obtained from Km,n by adding i pendant edges to each

vertex, then pd(G) = max{mi+ n, ni+m}.

Proof We do proof by induction on n. Suppose that n = 1 andm ≥ 1. Then by Proposition

2.7, we have, pd(G) = max{mi + 1, i + m} = mi + 1. Now, we may assume that n > 1 and

m > 1. Also, let the result is true for each Km,k and k < n. Since the sets
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{x1, x2, · · · , xn, y11 , y12 , · · · , y1i
, · · · , ym1 , ym2 , · · · , ymi

},

and

{y1, y2, · · · , ym, x11 , x12 , · · · , x1i
, · · · , xn1 , xn2 , · · · , xni

},

are the two minimal vertex cover of maximal size. By the proof Lemma 2.6, we have

pd(G) ≥ Bight(I(G)) = max{mi+ n, ni+m}.

On the other hand, by Lemma 2.5, we obtain

pd(G) ≤ max{pd(G−N [x1]) +m+ i, pd(G− {x1}) + 1}.

Now, by Corollary 2.2, pd(G−N [x1]) = (n− i), and so by induction hypothesis,

pd(G− {x1}) = max{mi+ (n− 1), (n− 1)i+m}.

Therefore

pd(G) = max{ni+m,max{mi+ (n− 1), (n− 1)i+m}}
= max{mi+ n, ni+m}.

Hence the result holds. 2
Corollary 2.9 If G is the graph obtained from Sn ⊗ Sm by adding i pendent edges to each

vertex, then

pd(G) = max{(mn+m)i+ n+ 1, (mn+ n)i+m+ 1}

for m,n ≥ 1. In particular, pd(Sn ⊗ Sm) = mn+m+ n− 1.

Proof Since Sn ⊗ Sm = Smn ∪Km,n, we have for i ≥ 1, (Sn ⊗ Sm)i = (Smn)i ∪ (Km,n)i.

So by Corollary 2.2, Propositions 2.7 and 2.8, the result holds. 2
Lemma 2.10([4, Lemma 5.1]) Let I be a squar-free monomial ideal and let Λ be any subset of the

variables. We relabel the variables so that Λ = {x1, · · · , xn}. Then either there exists a j with

1 ≤ j ≤ i such that pd(S/I) = pd(S/(I, x1, · · · , xj−1) : xj) or pd(S/I) = pd(S/(I, x1, · · · , xi).

Lemma 2.11 Let x be a vertex of a G. Then we have

(1) pd(G) = pd(G− {x}) + 1 or pd(G−N [x]) + deg(x);

(2) If pd(G−N [x]) + deg(x) ≥ pd(G− {x}) + 1, then pd(G) = pd(G−N [x]) + deg(x).

Proof (1) By the proof of Lemma 2.5, we have
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pd

(
R

(I(G) : x)

)
= pd(G−N [x]) + deg(x),

and

pd

(
R

(I(G), x)

)
= pd(G− {x}) + 1.

Also, by Lemma 2.10, we have

pd(G) = pd

(
R

(I(G) : x)

)
or pd(G) = pd

(
R

(I(G), x)

)
.

Hence the result part (1) holds.

(2) If pd(G − N [x]) + deg(x) ≥ pd(G − {x}) + 1, then by Lemma 2.5, we have, pd(G) ≤
pd(G−N [x]) + deg(x). Now, we consider the following short exact sequence

0 −→ R

(I(G) : x)
−→ R

I(G)
−→ R

(I(G), x)
−→ 0

Therefore, pd(G) = pd

(
R

I(G)

)
≥ pd

(
R

(I(G) : x)

)
= pd(G − N [x]) + deg(x). Hence the

result holds. 2
In the following proposition, we investigate the projective dimension of graphs G and H

such that G and H are graphs obtained from Pn and Cn by adding i pendant edges to each

vertex, respectively.

Proposition 2.12 If G and H are graphs obtained from Pn and Cn by adding i pendant edges

to each vertex, then

(1) pd(G) =
⌈n

2

⌉
i+
⌊n

2

⌋
;

(2) pd(H) =





n− 1

2
i+

n+ 1

2
if n is odd,

n

2
i+

n

2
if n is even.

Proof (1) we do proof by induction on n. If n = 2, then G is the double star graph (s1)i.

By Example 2.1.17 in [6], we have pd(G) = i+1. For n = 3, let G be the graph shown in Figure

1. Then pd(G− {x}) = pd(P2)i = pd(s1)i = i+ 1.

x11

x

x1i

y11

y

y1i

x11

z

z1i

Figure 1
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Also we have, pd(G−N [x]) = pd(si) = i. Hence pd(G−N [x])+deg(x) ≥ pd(G−{x})+1,

and so by Lemma 2.11, pd(G) = pd(G−N [x]) + deg(x) = 2i+ 1. Now, let n ≥ 4 and suppose

that for each Pn of order less that n the result is true. Let G be the graph shown in Figure 2.

x11

x1i

x1

x21

x2i

x2

x31

x3

x3i

Figure 2

By the inductive hypothesis, we obtain

pd(G− {x1}) = pd(Pn−1)i =

⌈
n− 1

2

⌉
i+

⌊
n− 1

2

⌋
,

and

pd(G−N [x1]) = pd(Pn−2)i =

⌈
n− 2

2

⌉
i+

⌊
n− 2

2

⌋
.

Hence by Lemma 2.11, the proof is complete.

(2) First, Assume that n is a odd number. Then H −{x1} = (Pn−1)i, and so H −N [x1] =

(Pn−3)i. If follows from part (1) and Lemma 2.11,

pd(H) = pd(H − {x1}) + 1 = pd(Pn−1)i+ 1

=

⌈
n− 1

2

⌉
i+

⌊
n− 1

2

⌋
+ 1 =

n

2
i+

n

2

or

pd(H) = pd(G−N [x1]) + deg(x1) = pd(Pn−3)i + i+ 2

=

⌈
n− 3

2

⌉
i+

⌊
n− 3

2

⌋
+ i+ 2 =

n

2
i+

n

2
.

Hence the result hold. 2
§3. The Betti Number of Some Graphs

In this section, we study the Betti number of two special graphs. We begin this section with

the basic facts and the following results.
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A simplicial complex △ over a set of vertices V = {x1, · · · , xn} is a subset of the powerset

of V with that property that, whenever F ∈ △ and G ⊆ F , then G ∈ △. The elements of △ are

called faces and the dimension of a face is dim(F ) = |F | − 1, where |F | is the cardinality of F .

Faces with dimension 0 are called vertices and those with dimension 1 are edges. A maximal

face of △ with respect to inclusion is called a facet of △ and the dimension of △, dim(△), is

the maximum dimension of its faces. If △ has an only facet, then it is called a simplex. Let △
and △′ be two simplicial complexes with vertex sets V and V ′, respectively. The union △∪△′

defines as the simplicial complex with the vertex set V ∪ V ′ and F is a face of △ ∪△′ if and

only if F is a face of △ or △′. If V ∩ V ′ = ∅, then the join △∗△′ is the simplicial complex on

the vertex set V ∪ V ′ with faces F ∪ F ′, where F ∈ △ and F ′ ∈ △′. The cone of △, denoted

by cone(△), is the join of a point {w} with △, that is, cone(△) = △∗ {w}. If F ∈ △, then we

define xF = Πxi∈Fxi ∈ R = K[x1, · · · , xn] for some field K. The Stanley-Reisner ideal of △,

denoted by I△ is I△ = 〈xF | F /∈ △〉 and the Stanley-Reisner ring of △ is K[△] =
R

I△
. Let

βi,j(△) denotes the N-graded Betti numbers of the Stanley-Reisner ring K[△]. one of the most

well-known results is the Hochster’s formula.

Theorem 3.1([9, Hochster’s formula]) For i > 0, the N-graded Betti number βi,j of a simplicial

complex △ are given by

βi,j(△) =
∑

W⊆V (△),|w|=j

dimK H̃j−i−1(△|w,K).

Lemma 3.2([9]) Let △1 and △2 be two simplicial complexes with disjoint vertex sets having m

and n vertices, respectively. Also, let △ = △1 ∪△2. Then the N-graded Betti numbers βi,d(△)

can be expressed as





d−2∑
j=0

{βi−j,d−j(△1) + βi−j,d−j(△2)} if d 6= i+ 1,

d−2∑
j=0

{βi−j,d−j(△1) + βi−j,d−j(△2)} +
d−1∑
j=1

if d = i+ 1.

Lemma 3.3([9]) Let G and H be two simple graphs whose vertex sets are disjoint. Then

△G∗H = △G ∪△H is the disjoint union of two simplicial complexes.

Lemma 3.4([6]) If H is the induced subgraph of G on a subset of the vertices of G, then

βi,d(H) ≤ βi,d(G) for all i.

Proposition 3.5([11, Proposition 5.2.5]) If △ is a simplicial complex and cn(△) = w ∗ △ its

cone, then

H̃p(cn(△),K) = 0,

for all p.

In the following theorem, we find a lower bound for the Betti number of graph (Km,n)i.
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Theorem 3.6 Let G = (Km,n)i. Then

βl(G) ≥ max{ ∑
j+k=l+1


 mi+ n

j




 m

k


 ,

∑
j+k=l+1


 ni+m

j




 n

k


}.

Proof Suppose that X = {x1, · · · , xm} and Y = {y1, · · · , yn} be two parts of graph

Km,n. Also, let Xr = {xr1 , · · · , xri
} and Ys = {ys1 , · · · , ysi

} be the leaves, which are adjacent

to xr and ys, respectively for 1 ≤ r ≤ m and 1 ≤ s ≤ n. Now, let G1 = (Km,n)i − ∪Ys.

Then it is easy to see that △G1 = △1 ∪ △2 such that △1 = 〈{x1, · · · , xm}〉, and △2 =

〈{y1, · · · , yn, x12 , · · · , x1i
, · · · , xm1 , · · · , xmi

}〉. Since △1 and △2 are simplexes, we have by

Proposition ??, H̃i(△1,K) = H̃i(△2,K) = 0 for all field K. Now, let W 6= ∅. If W ⊆ V (△1)

or W ⊆ V (△2), then △W is a simplex. So for all i, H̃i(△W ,K) = 0. Therefore, Suppose that

W ∩ V (△1) 6= ∅ and W ∩ V (△2) 6= ∅, and so △W is a simplicial complex with two connected.

Thus for all j, we have,

H̃j(△W ,K) =





0 j 6= 0,

K j = 0.

If d = l + 1, the by Hochster’s formula, we have

βl,d(G1) =
∑

W⊆V (△),|W |=d

dim H̃(△W ,K) =
∑

W⊆V (△),|W |=d

1

=


 mi+ n

1




 m

l


+


 mi+ n

2




 m

l− 1




+ · · ·+


 mi+ n

l




 m

1




=
∑

j+k=l+1


 mi+ n

j




 m

k


 .

Therefore

βl(G1) =
|V (G1)|∑

d=1

βl,d(G1) =
∑

j+k=l+1


 mi+ n

j




 m

k


 .

It follows by Lemma 3.4, β(G) ≥ ∑
j+k=l+1



 mi+ n

j







 m

k



 with using an argu-

ment similar, we can see that β(G) ≥ ∑
j+k=l+1


 mi+ n

j




 m

k


. This completes the

proof. 2
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As an immediate consequence of the preceding result, we obtain.

Corollary 3.7 Let G = (Sn)i. Then

βl(G) ≥ max{ ∑
j+k=l+1


 ni+ 1

j




 n

k


 ,


 n+ i

l


}.

Proof With assume that m = 1, the result follows from Theorem 3.5. 2
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Abstract: In a connected graph G(V, E), a set S ⊆ V is said to be a k-resolving set of

G, if for every pair of distinct vertices u, v ∈ V − S, there exists a vertex w ∈ S such that

|d(u, w) − d(v,w)| ≥ k for some k ∈ Z+. Among all k-resolving sets of G, a set having

minimum cardinality is called a k-metric basis of G and its cardinality is called the k-metric

dimension of G, denoted by βk(G). In this paper, we characterize graphs with prescribed

k-metric dimension. We also extend some of the earlier known results on metric dimension.

Key Words: Metric dimension, k-metric dimension, landmarks.

AMS(2010): 05C12

§1. Introduction

All graphs considered in this paper are simple, finite, undirected and connected. A vertex

w ∈ V (G) is said to resolve a pair of vertices u, v ∈ V (G) if d(u,w) 6= d(v, w). A set S ⊆ V (G)

resolvesG if every pair of distinct vertices ofG is resolved by some vertex in S. Further, the set S

is called a resolving set of G. In other words, a resolving set of G is a set S = {w1, w2, . . . , wt} of

vertices in G such that for each u ∈ V (G), the vector r(u|S) = (d(u,w1), d(u,w2), · · · , d(u,wt))

uniquely identifies u. The k-vector r(u|S) is called the metric code, S-location or S-code of

u ∈ V (G). A resolving set of minimum cardinality in a graph is called a minimum resolving

set or metric basis, the elements of which, are called landmarks. The metric dimension of G,

denoted by β(G), is the cardinality of a minimum resolving set in G.

The concept of resolving sets for a connected graph was introduced in the year 1975 by

Slater [15] using the term locating set. He called the minimum resolving set a reference set

and the cardinality of a reference set the locating number of the graph. In fact, resolving sets

were studied much earlier in the context of the coin-weighing problem [3, 4, 8]. In the year

1976, Harary and Melter [11] independently introduced these concepts, however, under different

terminologies. They used the term metric dimension instead of locating number. Since then,

1Received January 25, 2016, Accepted November 18, 2016.
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a significant amount of work has been carried out on resolving sets [2, 18, 23, 21, 17, 19, 7, 12,

25]. Also, there have been many instances where the concept of resolving sets has arisen, some

of which include navigation of robots, solution of the Mastermind game and network discovery

& verification.

The following are some of the results on metric dimension obtained by various authors and

are used for immediate reference in the subsequent sections of this paper.

Theorem 1.1([Khuller, Raghavachari and Rosenfeld, [13]) For a simple connected graph G,

β(G) = 1 if and only if G ∼= Pn.

Theorem 1.2([Harary and Melter [11]) For any positive integer n, β(G) = n− 1 if and only

if G ∼= Kn.

Theorem 1.3(Chartrand, Erwin, Harary and Zhang [6]) If G is a connected graph of order n,

then β(G) 6 n− diam(G).

Lemma 1.4 For any connected graph G on n vertices which is not a path,

2 ≤ β(G) ≤ n− diam(G).

In this paper, we establish certain bounds on k-metric dimension βk(G), introduced by

Sooryanarayana [22], as a generalization of metric dimension. Further, we obtain a bound

on the degree of a vertex and order of a graph in terms of its k-metric dimension. We also

characterize graphs G with βk(G) = k.

§2. k-Metric Dimension

The k-metric dimension βk(G) was introduced by Sooryanarayana in [22] as a generalization

to metric dimension. In particular, some work was carried out by Geetha and Sooryanarayana

[24] for k = 2.

Definition 2.1 Let G(V,E) be a connected graph and l, k ∈ Z+ with k 6 l. A subset S of V is

said to be a (l, k)-resolving set of G, if for every u, v ∈ V − S and u 6= v, there exists a vertex

w ∈ S with the property that k ≤ |d(u,w) − d(v, w)| 6 l. Further if l > diam(G), then every

(l, k)-resolving set is simply called a k-resolving set.

Definition 2.2 A k-resolving set S is said to be a minimal k-resolving set if none of its proper

subsets is a k-resolving set. Further a minimal k-resolving set of minimum cardinality is called

a lower k-metric basis or simply a k-metric basis of G and is denoted by Sk and its cardinality

is called the k-metric dimension of G and is denoted by βk(G).

Some of the results that follow directly from the above definition are stated below.

Remark 2.3 For any graph G on n vertices, 1 ≤ βk(G) ≤ n − 1 for all k ∈ Z+. Further, if
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k ≥ d, the diameter of G, then βk(G) = n− 1.

Remark 2.4 For k = 1, the k-metric dimension is same as metric dimension of a graph and

for k ≥ 2, it follows that βk(G) ≥ β(G). Further, as 1 ≤ β(G) 6 βk(G) 6 |V (G)|, it follows for

any integer k ≥ 1 that βk(Kn) = n− 1 whenever n ≥ 2.

Lemma 2.5 For any integer k ≥ 1, if S is a k-resolving set of a connected graph G and v ∈ S,

then V − S has at most one pendant vertex adjacent to v.

Proof If two or more pendant vertices are adjacent to v, then for each vertex w ∈ S the

distance from these vertices is identical. Hence S will not resolve these vertices. 2
Lemma 2.6 For any connected non-trivial graph G and an integer k ≥ 2, if S is a k-resolving

set of G, then d(x, y) ≥ k for any two distinct vertices x, y ∈ V − S.

Proof Suppose, to the contrary, that d(x, y) ≤ k − 1 for some x, y ∈ V − S. Let w ∈ S

be arbitrary. Without loss of generality, we assume that d(x,w) ≥ d(y, w). Then by triangular

inequality, we have d(x,w) ≤ d(x, y) + d(y, w) ⇒ d(x,w) − d(y, w) ≤ d(x, y) ≤ k − 1, a

contradiction since w is arbitrary. 2
If Sk is a k-metric basis for a graph G with |V − Sk| > 1, then, by Lemmas 2.5 and 2.6, it

follows that

1. V − Sk is an independent set and Sk is a dominating set.

2. At least k− 1 vertices in any shortest path between two distinct vertices of V −Sk are in

Sk.

3. The cardinality of Sk is at least k − 1, i.e., βk(G) ≥ k − 1.

4. n− i(G) 6 βk(G) 6 n− 1, where i(G) denotes the independence number of the graph G

5. γ(G) 6 βk(G), where γ(G) is the lower domination number of G.

Combining the above results, we have

Lemma 2.7 For any k ∈ Z+ and a connected non-trivial graph G on n vertices,

k − 1 6 βk(G) 6 n− 1.

The following result shows the cases where the lower bound in Lemma 2.7 is attained.

Theorem 2.8 For any connected non-trivial graph G of order n and an integer k ∈ Z+,

βk(G) = k − 1 if and only if n = k.

Proof Let Sk be a metric basis with |Sk| = βk(G) = k − 1. Then, as βk(G) 6 n − 1, it

follows that n > k. If n > k, then there exist at least two vertices x, y ∈ V − Sk. But then,

the second condition stated above implies that < Sk >∼= Pk−1 and x is adjacent to one of the
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end vertices of < Sk > and y is adjacent to the other. Hence |V − Sk| = 2 and G ∼= Pk+1.

This shows that diam(G) = k ⇒ |d(x,w) − d(y, w)| < k for any w ∈ Sk, a contradiction.

Thus, n = k. The converse follows immediately from Remark 2.3 by noting the fact that

k = n > n− 1 > diam(G). 2
Corollary 2.9 For any connected graph G and any integer k ≥ 2, βk(G) = 1 if and only if

G ∼= K2.

The following result is an extension of Theorem 1.2 and shows the cases where the upper

bound in Lemma 2.7 is attained.

Theorem 2.10 For any connected non-trivial graph G on n vertices and any integer k ≥ 1,

βk(G) = n− 1 if and only if diam(G) ≤ k.

Proof For k = 1, the result follows by Theorem 1.2. Suppose that k ≥ 2 and let G be a

connected non-trivial graph on n vertices with βk(G) = n − 1. Assume, to the contrary, that

diam(G) ≥ k+1. Then there exists a pair of vertices u, v ∈ V such that d(u, v) = k+1. Let P :

u−x1−x2−· · ·−xk−v be a shortest path from u to v. Let S = V −{x1, v}. Then V −S = {x1, v}
and for these x1, v ∈ V −S, the vertex u ∈ S is such that d(u, v)−d(u, x) = (k+1)−1 = k. So,

S is a k-resolving set of G and hence βk(G) ≤ |S| = n−2, a contradiction. The converse follows

from the fact that for any three distinct vertices x, y and u in G, |d(x, u)−d(y, u)| ≤ k−1 since

diam(G) 6 k. 2
Remark 2.11 From Theorem 2.10, it follows for any k ≥ 2 that the k-metric dimension of the

graphs on n vertices such as, Petersen graph, complete p-partite graphs for any p, 2 6 p ≤ n,

H +K1 for any graph H on n− 1 vertices, etc., is n− 1.

§3. Bounds on Order of a Graph and Degree of a Vertex in Terms of

k-Metric Dimension

In this section, we present some bounds on the order of a graph and degree of a vertex in a

graph in terms of its k-metric dimension.

Theorem 3.1 For any connected non-trivial graph G of order n and an integer k ≥ 3, if

βk(G) = m, then m+ 1 ≤ n ≤ m

(
k + 1

k − 1

)
+ 1 for odd k and m+ 1 ≤ n ≤ m

(
k + 2

k

)
+ 1 for

even k.

Proof The lower bound follows from Lemma 2.7. To establish the upper bound, consider a

k-metric basis Sk forG with |Sk| = m. Then, V −Sk is totally disconnected and |V −Sk| = n−m.

Since G is connected, by Lemma 2.6, the length of a shortest path between any two vertices

u, v ∈ V − Sk should include at least k − 1 vertices of Sk such that none of them is adjacent

to any other vertex in V − Sk. Thus, for n − m vertices in V − Sk, we must have at least

(n−m− 1)
⌊

k−1
2

⌋
distinct vertices in S. 2
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Remark 3.2 The above theorem need not be true for the case k = 2. For instance, for the

graph shown in Figure 1, the set S2 = {w1, w2, w3} is a metric basis with m = 3 and n = 8.

1
w

2
w

3
w

1
x

2
x

3
x

4
x

5
x

Figure 1 A graph G on 8 vertices with β2(G) = 3

Theorem 3.3 For any connected non-trivial graph G of order n, if β2(G) = m, then m+ 1 ≤
n ≤ m(m+ 3)

2
.

Proof The lower bound follows from Lemma 2.7. For the upper bound, let Sk be a k-

metric basis for G with |Sk| = m with w1, w2, · · · , wm being the vertices in Sk. Let NS̄k
(wj)

denote the set of vertices in V − Sk adjacent to the vertex wj , for 1 6 j 6 m. Then for each

pair of vertices x, y ∈ NS̄k
(w1), Sk should contain at least one vertex wi which is adjacent

to exactly one of these vertices (clearly wi 6= w1). Hence for the vertex w1 ∈ Sk, the set

Sk should contain at least NS̄k
(w1) − 1 new vertices other than w1. This is possible only if

NS̄k
(w1) 6 m. We now define N(wj) recursively as (i) N(w1) = NS̄k

(w1) and (ii) for j > 2,

N(wj) = NS̄k
(wj) − NS̄k

(wj−1). Then, for each pair of vertices in x, y ∈ N(w2), we require

at least N(w2) − 1 vertices in Sk − {w1, w2} adjacent to exactly one of these vertices (since

N(w1) ∩N(w2) = ∅). This is possible only if N(w2) 6 m− 1. Continuing the same argument,

we get, for each 1 6 j 6 m, that N(wj) 6 m− j + 1. Further, since the graph G is connected

and the set V − Sk is independent, the way N(wj) is constructed implies that

|V − Sk| =

m∑

j=1

N(wj) =

m∑

j=1

(m− j + 1) =
m(m+ 3)

2
. 2

Lemma 3.4 For any integer k > 2 and a k-resolving set S of a graph G of order n with

|S| 6 n − 2, if v ∈ S is a vertex that lies in a shortest path between two vertices x and y in

V − S, then deg(v) 6 |S| − k + 2.

Proof We prove the result in two cases based on whether v is adjacent to any vertex in

V − S or not.

Case 1. x (similarly y) is a vertex adjacent to v.

In this case any shortest xy-path P should contain at least k−1 vertices of S for any other

vertex y ∈ V − S. Such a vertex y exists as |V − S| > 2. Further, we note that exactly two

vertices in P are adjacent to v.

Subcase 1 P contains exactly k − 1 vertices of S.

In such a case, v is adjacent to at most |S| − (k − 1) vertices of S − P . Further if v is

adjacent to exactly |S|− k+1 vertices of S−P then no vertex w ∈ S will resolve x and y since

in this case d(x, y) = k and d(x,w) = 2, d(y, w) 6 k. Hence v is adjacent to at most |S| − k
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vertices in S − P . Now if v is adjacent to any other vertex in z ∈ V − S, then k = 2 since

d(x, z) = 2. Thus, in order to resolve x and z, we require a vertex w ∈ S non adjacent to v.

This shows that v is adjacent to a vertex in V −S only by being non-adjacent to a vertex in S.

Thus deg(v) 6 |S| − k + 2.

Subcase 2. P contains more than k − 1 vertices of S.

In this case v is adjacent to at most |S| − k vertices of S not in P and the vertex adjacent

to y in P will resolve x and y. Hence deg(v) 6 |S| − k + 2.

Case 2. v is not adjacent to any vertex in V − S.

In this case v is adjacent to exactly two vertices in P and at most |S| − (l(P )− 1) vertices

in S − P . However, as discussed earlier, if v is adjacent to exactly |S| − (l(P ) − 1) vertices in

S − P , then no vertex in S will resolve x and y unless l(P ) > k, which implies that deg(v) 6

|S| − k + 2 = |S| − k + 2. 2
Lemma 3.5 For any integer k > 2 and a k-resolving set S of a graph G of order n with

|S| 6 n− 2, if v ∈ S is a vertex not in any shortest path between any two vertices x and y in

V − S, then deg(v) 6 |S| − k + 1.

Proof The vertex v is adjacent to at most two adjacent vertices in a shortest path P

between two vertices x and y in V − S. Otherwise, v lies in a shortest xy-path or P will not

remain a shortest path.

Case 1. v is adjacent to two adjacent vertices u1 and u2 in P .

In this case no vertex z ∈ V − S is adjacent to v. Otherwise, it is easy to observe that

v lies in a shortest path between x and z which is not possible. Also, neither v nor any

vertex v1 adjacent to v will resolve x and y whenever l(P ) 6 k. Without loss of generality,

let d(x, v) > d(y, v) and u1 be nearer to x than u2. Then d(x, v) > d(x, u1). If not, extending

xv-path to u2 and then from u2 to y along P yields an xy-path containing v that has length

at most that of P , a contradiction. Also d(x, v) ≤ d(x, u1) + 1 as v is adjacent to u1 which

implies that d(x, u1) 6 d(x, v) 6 d(x, u1)+ 1. Similarly d(y, u2) 6 d(y, v) 6 d(y, u2)+ 1. Hence

|d(x, v) − d(y, v)| 6 |d(x, u1) + 1 − d(y, u2)| = |d(x, u2) − d(y, u2)| = |d(x, u2) + d(y, u2) −
2d(y, u2)| = |l(P )− 2d(x, u2)| = |l(P )− 2| = k− 2 < k, a contradiction. Similarly we can show

that v1 will not resolve x and y. Thus, l(P ) > k + 1 so that v is adjacent to two vertices in P

and at most |S| − k − 1 vertices of S − V (P ). Hence deg(v) 6 |S| − k + 1.

Case 2. v is adjacent to at most one vertex u1 in P .

In this case v can be adjacent to at most |S| − k elements of S − V (P ). Further, if v is

adjacent to any vertex in V − S, then k 6 4. When k = 3 or 4 and v is adjacent to exactly

one vertex z ∈ V − S, we require at least one vertex in S − V (P ) not adjacent to v to resolve

each pair of vertices in {x, y, z}. When k = 2 and v is adjacent to z1, z2, z3, · · · , zi in V − S,

we require i vertices in S not adjacent to v to resolve each pair in {x, y, z1, z2, · · · , zi}. Hence

deg(v) 6 |S| − k.

Thus, in each of the cases, we see that deg(v) 6 |S| − k + 1. 2
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The following lemma is based on the fact that the set V − S is an independent set and for

each x, y ∈ V − S, d(x, y) > k, the vertex x cannot be adjacent to at least k − 1 vertices in S.

Lemma 3.6 For any integer k > 2 and a k-resolving set S of a graph G of order n with

|S| 6 n− 2, if v ∈ V − S, then deg(v) 6 |S| − k + 1.

Summarizing the above results, we have the following theorem.

Theorem 3.7 For any integer k > 2 and a graph G of order n > k

∆(G) 6 βk(G) − k + 2.

In the following theorem, we establish a bound on the order of a graph in terms of its

k-metric dimension and diameter.

Theorem 3.8 Suppose G is a graph on n vertices with diameter d ≥ 2 and metric dimension

βk(G) = m. Then

n 6 m+ 1 +



 m

k




d−1∑

i=1

(d− i− k + 1)m−k.

x y

1i
w

2i
w

li
w

1kil
S

V – S

Figure 2 A k-resolving set for the proof of Theorem 3.8.

Proof Let Sk be a k-resolving set with |S − k| = m and x, y ∈ V − Sk. Then, as

d(x, y) > k, there are vertices wi1 , wi2 , · · · , wil
of Sk in a shortest xy-path, where il > k − 1.

The coordinates of the vertex x corresponding to these il vertices are respectively 1, 2, . . . l and

that of the vertex y are l, l − 1, · · · 1. Hence these coordinates are fixed. Now, for any other

wj ∈ Sk, if the coordinate of x corresponding to wj is lj , then, as d(x, y) > k, the difference

between lj and coordinate of y corresponding to wj should be at least k. Without loss of

generality we assume d(x,wj) 6 d(y, wj). Then, there are at most (d− lj − k + 1) possibilities

for the coordinate of y corresponding to the vertex wj , where 1 6 lj 6 d. Thus, there are at

most
d−1∑

i=1

(d− i− k + 1)m−k
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possible vectors that can be assigned for the vertex y. Therefore

|V − Sk| 6


 m

k




d−1∑

i=1

(d− i− k + 1)m−k. 2
§4. Characterization of Graphs with βk(G) = k

S. Khuller et al. [13] in the year 1996, proved that β(G) = 1 if and only if G is a path. In a

similar manner, we characterize classes of graphs for which β2(G) = 2 in this section. Further,

we establish a characterization of graphs with βk(G) = k.

Theorem 4.1 For a connected graph G, β2(G) = 2 if and only if G ∼= P3 or P4 or P5 or C3.

Proof Let G be a connected graph such that β2(G) = 2 and S = {w1, w2} be a 2-metric

basis of G. Then, by Corollary 2.9, |V | ≥ 3.

We first claim that |V (G)| ≤ 5. By Lemma 2.6, the set V − S is an independent set. So,

as the graph G is connected, every vertex in V − S is adjacent to a vertex in S. If two or more

vertices in V − S are adjacent to both the vertices in S, then by Definition 2.2, we see that S

is not a 2-metric basis. Hence, at most one vertex can be adjacent to both the vertices in S.

Similarly, at most one vertex x ∈ V − S can be adjacent to one of the vertices w1 or w2 (since

if x, y ∈ V −S are adjacent to w1, then, as S is a 2-metric basis, |d(x,w2)−d(y, w2)| ≥ 2 which

is not possible because S is independent). Hence |V − S| ≤ 3 and |V | ≤ 5.

Suppose |V | = 3, then G is one of P3 or C3 as G is connected. Similarly, if |V | = 4, then

by Theorem 2.10, diam(G) > 2 and hence G must be P4. In the case of |V | = 5, we have

|V − S| = 3 and by the same argument, we see that at most one vertex can be adjacent to

either w1 or w2 and at most one vertex can be adjacent to both w1 and w2. If w1 and w2 are

non-adjacent, then G is a path P5. Else, as seen in Figure 3, for any vertex v ∈ V −S, we have

1 ≤ d(v, wi) ≤ 2, for each i = 1, 2 and hence S is not 2-metric basis. Thus if |V | = 5, then G

must be a path.

Conversely, it is easy to verify that each the graphs P3, P4, P5 and C3 has its 2-metric

dimension 2. This completes the proof. 2
2
w

1
w

Figure 3 Graph with β2(G) = 2

Theorem 4.2 For any integer k ≥ 3, βk(G) = k if and only if G is a connected graph on k+1

vertices or G ∼= Pk+2.
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Proof Let Sk be a k-metric basis for G with |Sk| = k. Then, by Theorem 3.1, we get

k + 1 ≤ n ≤ k

(
k

k − 1

)
+ 1 =

(k + 2)(k − 1) + 1

k − 1
= (k + 2) +

1

k − 1
⇒ k + 1 ≤ n ≤ k + 2

(since k ≥ 3) and hence |V − Sk| ≤ 2.

Case 1. |V − Sk| = 2.

Let V − Sk = {x, y}. w ∈ Sk resolves x and y, and x1 ∈ Sk is adjacent to x. Then the

only two possibilities are that (i) x1 = w and d(y, w) = k + 1 or (ii) x1 6= w and y is adjacent

to w (since |Sk| = k and d(x, y) ≥ k). So, the graph in this case is Pk+2.

Case 2. |V − Sk| = 1

In this case, |V (G)| = k + 1 and hence diam(G) ≤ k. Thus, by Theorem 2.10, it follows

that G is any connected graph on k + 1 vertices for βk(G) = k.

Conversely for a connected graph on k + 1 vertices we have diam(G) ≤ k and hence by

Theorem 2.10, βk(G) = (k + 1) − 1 = k. Further, for any path on Pk+2 vertices and any

k-resolving set Sk of Pk+2, the distance between any two vertices in V −Sk is at least k, which

implies that, |V − Sk| ≤ 2. Hence |Sk| ≥ k.

Let {v1, v2, · · · , vk, vk+1, vk+2} be the vertices of the path Pk+2 such that vi is adjacent to

only vi+1 for each i, 1 ≤ i ≤ k+1. Consider the set Sk = {v2, v3, · · · , vk, vk+2}. v1, vk+1 are the

only vertices in V − Sk that are k-resolved by the vertex vk+2 in Sk. Hence Sk is a k-resolving

set with |Sk| = k. Therefore βk(Pk+2) = k. 2
Problem 4.3 Solve for G, the equation βk(G) = k + 1 for all k 6 diam(G).
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§1. Introduction

For standard terminology and notation in graph theory we refer Harary [4] and Zaslavsky [40]

for signed graphs. Throughout the text, we consider finite, undirected graph with no loops or

multiple edges.

Within the rapid growth of the Internet and the Web, and in the ease with which global

communication now takes place, connectedness took an important place in modern society.

Global phenomena, involving social networks, incencitives and the behavior of people based on

the links that connect us appear in a regular manner. Motivated by these developments, there

is a growing multidisciplinary interest to understand how highly connected systems operate [3].

In social sciences we often deal with relations of opposite content, e.g., “love”- “hatred”,

“likes”-“dislikes”, “tells truth to”-“lies to” etc. In common use opposite relations are termed

positive and negative relations. A signed graph is one in which relations between entities may

be of various types in contrast to an unsigned graph where all relations are of the same type.

In signed graphs edge-coloring provides an elegant and uniform representation of the various

types of relations where every type of relation is represented by a distinct color.

In the case where precisely one relation and its opposite are under consideration, then

instead of two colors, the signs + and - are assigned to the edges of the corresponding graph in

order to distinguish a relation from its opposite. In the case where precisely one relation and

its opposite are under consideration, then instead of two colors, the signs + and − are assigned

to the edges of the corresponding graph in order to distinguish a relation from its opposite.

Formally, a signed graph Σ = (Γ, σ) = (V,E, σ) is a graph Γ together with a function that

assigns a sign σ(e) ∈ {+,−}, to each edge in Γ. σ is called the signature or sign function. In

such a signed graph, a subset A of E(Γ) is said to be positive if it contains an even number

1Received June 6, 2016, Accepted November 20, 2016.
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of negative edges, otherwise is said to be negative. Balance or imbalance is the fundamental

property of a signed graph. A signed graph Σ is balanced if each cycle of Σ is positive. Otherwise

it is unbalanced.

Signed graphs Σ1 and Σ2 are isomorphic, written Σ1
∼= Σ2, if there is an isomorphism

between their underlying graphs that preserves the signs of edges.

The theory of balance goes back to Heider [7] who asserted that a social system is balanced

if there is no tension and that unbalanced social structures exhibit a tension resulting in a

tendency to change in the direction of balance. Since this first work of Heider, the notion

of balance has been extensively studied by many mathematicians and psychologists. In 1956,

Cartwright and Harary [2] provided a mathematical model for balance through graphs.

A marking of Σ is a function ζ : V (Γ) → {+,−}. Given a signed graph Σ one can easily

define a marking ζ of Σ as follows: For any vertex v ∈ V (Σ),

ζ(v) =
∏

uv∈E(Σ)

σ(uv),

the marking ζ of Σ is called canonical marking of Σ.

The following are the fundamental results about balance, the second being a more advanced

form of the first. Note that in a bipartition of a set, V = V1 ∪ V2, the disjoint subsets may be

empty.

Theorem 1.1 A signed graph Σ is balanced if and only if either of the following equivalent

conditions is satisfied:

(1)(Harary [5]) Its vertex set has a bipartition V = V1 ∪ V2 such that every positive edge

joins vertices in V1 or in V2, and every negative edge joins a vertex in V1 and a vertex in V2;

(2)(Sampathkumar [13]) There exists a marking µ of its vertices such that each edge uv in

Γ satisfies σ(uv) = ζ(u)ζ(v).

Let Σ = (Γ, σ) be a signed graph. Complement of Σ is a signed graph Σ = (Γ, σ′), where for

any edge e = uv ∈ Γ, σ′(uv) = ζ(u)ζ(v). Clearly, Σ as defined here is a balanced signed graph

due to Theorem 1.1. For more new notions on signed graphs refer the papers (see [10-37]).

A switching function for Σ is a function ζ : V → {+,−}. The switched signature is

σζ(e) := ζ(v)σ(e)ζ(w), where e has end points v, w. The switched signed graph is Σζ := (Σ|σζ).

We say that Σ switched by ζ. Note that Σζ = Σ−ζ (see [1]).

If X ⊆ V , switching Σ by X (or simply switching X) means reversing the sign of every

edge in the cut set E(X,Xc). The switched signed graph is ΣX . This is the same as Σζ where

ζ(v) := − if and only if v ∈ X . Switching by ζ or X is the same operation with different

notation. Note that ΣX = ΣXc

.

Signed graphs Σ1 and Σ2 are switching equivalent, written Σ1 ∼ Σ2 if they have the same

underlying graph and there exists a switching function ζ such that Σζ
1
∼= Σ2. The equivalence

class of Σ,

[Σ] := {Σ′ : Σ′ ∼ Σ},

is called the its switching class.
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Similarly, Σ1 and Σ2 are switching isomorphic, written Σ1
∼= Σ2, if Σ1 is isomorphic to a

switching of Σ2. The equivalence class of Σ is called its switching isomorphism class.

Two signed graphs Σ1 = (Γ1, σ1) and Σ2 = (Γ2, σ2) are said to be weakly isomorphic (see

[?]) or cycle isomorphic (see [?]) if there exists an isomorphism φ : Γ1 → Γ2 such that the sign

of every cycle Z in Σ1 equals to the sign of φ(Z) in Σ2. The following result is well known.

Theorem 1.2(T. Zaslavsky [39]) Two signed graphs Σ1 and Σ2 with the same underlying graph

are switching equivalent if and only if they are cycle isomorphic.

In [16], the authors introduced the switching and cycle isomorphism for signed digraphs.

In this paper, we initiate a study of the radial signed graph of a given signed graph and solve

some important signed graph equations and equivalences involving it. Further, we obtained the

structural characterization of radial signed graphs.

§2. Radial Signed Graph of a Signed Graph

In a graph Γ, the distance d(u, v) between a pair of vertices u and v is the length of a shortest

path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from

u. The radius r(Γ) of Γ is defined by r(Γ) = min{e(u) : u ∈ Γ} and the diameter d(Γ) of Γ is

defined by d(Γ) = max{e(u) : u ∈ Γ}. A graph for which r(Γ) = d(Γ) is called a self-centered

graph of radius r(Γ). A vertex v is called an eccentric vertex of a vertex u if d(u, v) = e(u). A

vertex v of Γ is called an eccentric vertex of Γ if it is an eccentric vertex of some vertex of Γ.

Let Si denote the subset of vertices of Γ whose eccentricity is equal to i.

Kathiresan and Marimuthu [8] introduced a new type of graph called radial graph. Two

vertices of a graph Γ are said to be radial to each other if the distance between them is equal

to the radius of the graph. The radial graph of a graph Γ, denoted by R(Γ), has the vertex

set as in Γ and two vertices are adjacent in R(Γ) if, and only if, they are radial in Γ. If Γ is

disconnected, then two vertices are adjacent in R(Γ) if they belong to different components of

Γ. A graph Γ is called a radial graph if R(Γ′) = Γ for some graph Γ′.

Motivated by the existing definition of complement of a signed graph, we now extend the

notion of radial graphs to signed graphs as follows: The radial signed graph R(Σ) of a signed

graph Σ = (Γ, σ) is a signed graph whose underlying graph is R(Γ) and sign of any edge uv is

R(Σ) is ζ(u)ζ(v), where ζ is the canonical marking of Σ. Further, a signed graph Σ = (Γ, σ) is

called radial signed graph, if Σ ∼= R(Σ′) for some signed graph Σ′. following result restricts the

class of radial graphs.

Theorem 2.1 For any signed graph Σ = (Γ, σ), its radial signed graph R(Σ) is balanced.

Proof Since sign of any edge e = uv in R(Σ) is ζ(u)ζ(v), where ζ is the canonical marking

of Σ, by Theorem 1.1, R(Σ) is balanced. 2
For any positive integer k, the kth iterated radial signed graph, Rk(Σ) of Σ is defined as

follows:

R0(Σ) = Σ, Rk(Σ) = R(Rk−1(Σ)).
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Corollary 2.2 For any signed graph Σ = (Γ, σ) and for any positive integer k, Rk(Σ) is

balanced.

The following result characterize signed graphs which are radial signed graphs.

Theorem 2.3 A signed graph Σ = (Γ, σ) is a radial signed graph if, and only if, Σ is balanced

signed graph and its underlying graph Γ is a radial graph.

Proof Suppose that Σ is balanced and Γ is a radial graph. Then there exists a graph Γ′ such

that R(Γ′) ∼= Γ. Since Σ is balanced, by Theorem 1, there exists a marking ζ of Γ such that

each edge uv in Σ satisfies σ(uv) = ζ(u)ζ(v). Now consider the signed graph Σ′ = (Γ′, σ′),

where for any edge e in Γ′, σ′(e) is the marking of the corresponding vertex in Γ. Then clearly,

R(Σ′) ∼= Σ. Hence Σ is a radial signed graph.

Conversely, suppose that Σ = (Γ, σ) is a radial signed graph. Then there exists a signed

graph Σ′ = (Γ′, σ′) such that R(Σ′) ∼= Σ. Hence, Γ is the radial graph of Γ′ and by Theorem 3,

Σ is balanced. 2
The following result characterizes the signed graphs which are isomorphic to radial signed

graphs. In case of graphs the following result is due to Kathiresan and Marimuthu [9].

Theorem 2.4 Let Γ be a graph of order n. Then R(Γ) ∼= Γ if, and only if, Γ is a connected

graph with r(Γ) = d(Γ) = 1 or r(Γ) = 1 and d(Γ) = 2.

Theorem 2.5 For any connected signed graph Σ = (Γ, σ), Σ ∼ R(Σ) if, and only if, Σ is

balanced and the underlying graph Γ with r(Γ) = d(Γ) = 1 or r(Γ) = 1 and d(Γ) = 2.

Proof Suppose R(Σ) ∼ Σ. This implies, R(Γ) ∼= Γ and hence by Theorem 2.4, we see

that the graph Γ satisfies the conditions in Theorem 2.4. Now, if Σ is any signed graph with

underlying graph being r(Γ) = d(Γ) = 1 or r(Γ) = 1 and d(Γ) = 2, Theorem 2.1 implies that

R(Σ) is balanced and hence if Σ is unbalanced and its radial signed graph R(Σ) being balanced

can not be switching equivalent to Σ in accordance with Theorem 1.2. Therefore, Σ must be

balanced.

Conversely, suppose that Σ balanced signed graph with the underlying graph Γ with r(Γ) =

d(Γ) = 1 or r(Γ) = 1 and d(Γ) = 2. Then, since R(Σ) is balanced as per Theorem 3 and since

R(Γ) ∼= Γ by Theorem 2.4, the result follows from Theorem 1.2 again. 2
In [9], the authors characterize the graphs for which R(Γ) ∼= Γ.

Theorem 2.6 Let Γ be a graph of order n. Then R(Γ) ∼= Γ if, and only if, either S2(Γ) = V (Γ)

or Γ is disconnected in which each component is complete.

In view of the above result, we have the following result that characterizes the family of

signed graphs satisfies R(Σ) ∼ Σ.

Theorem 2.7 For any signed graph Σ = (Γ, σ), R(Σ) ∼ Σ if, and only if, either S2(Γ) = V (Γ)

or Γ is disconnected in which each component is complete.
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Proof Suppose that R(Σ) ∼ Σ. Then clearly, R(Γ) ∼= Γ. Hence by Theorem 2.6, Γ is either

S2(Γ) = V (Γ) or disconnected in which each component is complete.

Conversely, suppose that Σ is a signed graph whose underlying graph is either S2(Γ) = V (Γ)

or Γ is disconnected in which each component is complete. Then by Theorem 2.6, R(Γ) ∼= Γ.

Since for any signed graph Σ, both R(Σ) and Σ are balanced, the result follows by Theorem

1.2. 2
The following result due to Kathiresan and Marimuthu [9]gives a characterization of graphs

for which R(Γ) ∼ R(Γ).

Theorem 2.8 Let Γ be a graph. Then R(Γ) ∼ R(Γ) if, and only if, Γ satisfies any one the

following conditions:

(1) Γ or Γ is complete;

(2) Γ or Γ is disconnected with each component complete out of which one is an isolated

vertex.

We now give a characterization of signed graphs whose radial signed graphs are switching

equivalent to their radial signed graph of complementary signed graphs.

Theorem 2.9 For any signed graph Σ = (Γ, σ), R(Σ) ∼ R(Σ) if, and only if, Γ satisfies the

conditions of Theorem 2.8.

The notion of negation η(Σ) of a given signed graph Σ defined in [6] as follows:

η(Σ) has the same underlying graph as that of Σ with the sign of each edge opposite to

that given to it in Σ. However, this definition does not say anything about what to do with

nonadjacent pairs of vertices in Σ while applying the unary operator η(.) of taking the negation

of Σ.

For a signed graph Σ = (Γ, σ), the Ek(Σ) is balanced (Theorem 2.1). We now examine,

the conditions under which negation η(Σ) of Ek(Σ) is balanced.

Theorem 2.10 Let Σ = (Γ, σ) be a signed graph. If R(Γ) is bipartite then η(R(Σ)) is balanced.

Proof Since, by Theorem 2.1, R(Σ) is balanced, if each cycle C in R(Σ) contains even

number of negative edges. Also, since R(Γ) is bipartite, all cycles have even length; thus, the

number of positive edges on any cycle C in R(Σ) is also even. Hence η(R(Σ)) is balanced. 2
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Abstract: For two vertices u and v of a connected graph G, the set I [u, v] consists of all

those vertices lying on u − v geodesics in G. Given a set S of vertices of G, the union of all

sets I [u, v] for u, v ∈ S is denoted by I [S]. A convex set S satisfies I [S] = S. The convex

hull [S] of S is the smallest convex set containing S. The hull number h(G) is the minimum

cardinality among the subsets S of V with [S] = V . In this paper, we introduce and study the

geodesic irredundant number of a graph. A set S of vertices of G is a geodesic irredundant set

if u /∈ I [S−{u}] for all u ∈ S and the maximum cardinality of a geodesic irredudant set is its

irredundant number gir(G) of G. We determine the irredundant number of certain standard

classes of graphs. Certain general properties of these concepts are studied. We characterize

the classes of graphs of order n for which gir(G) = 2 or gir(G) = n or gir(G) = n − 1,

respectvely. We prove that for any integers a and b with 2 ≤ a ≤ b, there exists a connected

graph G such that h(g) = a and gir(G) = b. A graph H is called a maximum irredundant

subgraph if there exists a graph G containing H as induced subgraph such that V (H)

is a maximum irredundant set in G. We characterize the class of maximum irredundant

subgraphs.

Key Words: Interior vertex, extreme vertex, hull number, geodesic irredundant sets,

irredundant number.

AMS(2010): 05C12

§1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or multiple

edges. The distance d(u, v) between two vertices u and v in a connected graph G is the length

of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. It is

known that the distance is a metric on the vertex set V . The set I[u, v] consists of all vertices

lying on some u - v geodesic of G, while for S ⊆ V , I[S] =
⋃

u,v∈S
I[u, v]. The set S is convex

if I[S] = S. The convex hull [S] is the smallest convex containing S. The convex hull [S]

1Received April 12, 2016, Accepted November 22, 2016.
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can also be formed from the sequence {Ik[S]}, k ≥ 0, where I0[S] = S, I1[S] = I[S] and

Ik[S] = I[Ik−1[S]] for k ≥ 2. From some term on, this sequence must be constant. Let p be

the smallest number such that Ip[S] = Ip+1[S]. Then Ip[S] is the convex hull [S]. A set S of

vertices of G is a hull set of G if [S] = V , and a hull set of minimum cardinality is a minimum

hull set or h-set of G. The cardinality of a minimum hull set of G is the hull number h(G) of

G. To illustrate these concepts, consider the graph G in Figure 1.1 and the set S = {s, t, y}.
Since I[S] = {s, t, u, v, w, x, y} and I2[S] = V , it follows that S is a hull set of G. In fact, S is

a minimum hull set and so h(G) = 3.

b

b

b

b

b

b

b

b

b b b

b

b

b

b

u

x

wz

s t
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Figure 1.1

A vertex x is an extreme vertex of G if the induced subgraph of the neighbors of x is

complete or equivalently, V − {x} is convex in G. The hull number is an important graph

parameter. The hull number of a graph was introduced by Everett and Seidman [7] and further

studied in [2, 3, 4, 5, 8].

These concepts have many applications in location theory and convexity theory. There are

interesting applications of these concepts to the problem of designing the route for a shuttle

and communication network design. For basic graph theoretic terminology, we refer to [6]. We

also refer to [1] for results on distance in graphs.

If S is hull set of a connected graph G and u, v ∈ S, then each vertex of every u−v geodesic

of G belongs to I[S]. This gives the following observation.

Observation 1.1([3]) Let S be a h-set of a connected graph G and let u, v ∈ S. If w 6= (u, v)

lies on a u− v geodesic in G, then w /∈ S.

The above observation motivate us to study a new type of sets, called geodesic irredundant

sets, which generalizes minimum hull sets in a graph. In the next section, we introduce and

study geodesic irredundant sets and the irredundant number of a graph. The irredundant

number of certain standard classes of graphs are determined. Various characterization results

are proved.

Theorem 1.2([3]) For integers m,n ≥ 2, h(Km,n) = 2.

Theorem 1.3([3]) Each extreme vertex of a connected graph G belongs to every hull set of G.

In particular, if the set S of all extreme vertices is a hull set of G, then S is the unique h-set

of G.



The Geodesic Irredundant Sets in Graphs 137

§2. Geodesic Irredundant Sets in Graphs

Let S be a set of vertices in a connected graph G. A vertex v in S is called an interior vertex of

S, if v ∈ I[S−{v}]. The set of all interior vertices of S is denoted by S0. It can be observe that

if S0 = ∅, then T 0 = ∅ for any subset T of S. A set S of vertices is called a geodesic irredundant

set or simply irredundant set if S0 = ∅. An irredundant set of maximum cardinality is called a

maximum irredundant set or a gir− set of G. The cardinality of a gir− set is the irredundant

number gir(G) of G. It follows from Observation 1.1 that every minimum hull set of a connected

graph G is an irredundant set in G and so we have that 2 ≤ h(G) ≤ gir(G) ≤ n, where n is the

order ofG. To illustrate these concepts, consider the graphG in Figure 2.1. Let S = {v2, v3, v5}.
Then it is clear that S0 = ∅ and so S is an irredundant set. It can be easily verified that any set

with four or more vertices is not an irredundant set of G and so gir(G) = |S| = 3. On the other

hand, let S′ = {v1, v4}. Then I[S′] = V and so we have that h(G) = 2. Since the irredundant

number of a disconnected graph is the sum of the irredundant numbers of its components, we

are only concerned with connected graphs. One can note that for each integer n, there is only

one connected graph of order n having the largest possible irredundant number, namely n, and

this is the complete graph Kn.
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b

b

b

b

b

b

v5

v1

v3

v4

v2

Figure 2.1

Theorem 2.1 For a connected graph G of order n, gir(G) = n if and only if G = Kn.

We determine the geodesic irredundant number of certain standard classes of graphs.

Proposition 2.2 For integers m ≥ n ≥ 2, gir(Km,n) = m.

Proof It is clear that gir(K2,2) = 2 and so we can assume that m ≥ 3. Let V1 and V2

be the partite sets of Km,n with |V1| = m and |V2| = n. Then it is obvious that both V1 and

V2 are irredundant sets of Km,n. Now, let S be any set of cardinality greater than m. Then

S ∩ V1 6= ∅ and S ∩ V2 6= ∅. Since |S| ≥ 3, it follows that either |S ∩ V1| ≥ 2 or |S ∩ V2| ≥ 2.

This shows that S0 6= ∅ and hence gir(Km,n) = |V1| = m. 2
Proposition 2.3 For any cycle Cn (n ≥ 5), gir(Cn) = 3.

Proof Let S = {x1, x2, · · · , xk} be any set of vertices in Cn of cardinality k ≥ 4. We prove

that S0 6= ∅. Assume the contrary that S0 = ∅. Then we consider the following two cases.

Case 1. n is even. Now, let v be the antipodal vertex of x1. If v ∈ S and since |S| ≥ 4, it
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follows that S0 6= ∅. So we can assume that v /∈ S. Let P1 : x1 = u1, u2, · · · , un
2
+1 = v and

P2 : x1 = v1, v2, · · · , vn
2 +1 = v be the two x1 − v geodesics in Cn. Since S0 = ∅, without loss of

generality we can assume that x2 = ur ∈ P1; and x3 = vs ∈ P2 and x4 = ut ∈ P1. If t < r, then

x4 ∈ S0; and it t > r, then x2 ∈ S0. This is a contradiction. Thus S is not an irredundant set

and hence gir(Cn) ≤ 3. Now, since T = {u1, un
2
, vn

2
} is an irredundant set of cardinality 3, we

have that gir(Cn) = 3.

Case 2. n is odd. Let x1 ∈ S and let v, v′ be the two antipodal vertices of x1. Let P1 : x1 =

u1, u2, · · · , un+1
2

= v′ and P2 : x1 = v1, v2, · · · , vn+1
2

= v be the x1 − v′ and x1 − v geodesics in

Cn, respectively. Since S is an irredundant set containing at least four vertices, it follows that

either v /∈ S or v′ /∈ S.

Subcase 2.1 v /∈ S and v′ = x2 ∈ S. Then it is clear that x3, x4 /∈ P1 and so x3, x4 ∈ P2.

This implies that either x3 ∈ S0 or x4 ∈ S0. This leads to a contradiction to the fact that

S0 = ∅.

Subcase 2.2 v /∈ S and v′ /∈ S. Now, since S0 = ∅, we have that P1 contains at most one

of x2 and x3. Also, P2 contains at most one of x2 and x3. Hence without loss of generality, we

may assume that x2 ∈ P1 and x3 ∈ P2. Now, since |S| ≥ 4, as in Case 1, it follows that S0 6= ∅.
This is impossible and hence gir(Cn) ≤ 3. Now, since T = {x1, v, v

′} is an irredundant set of

Cn, we have that gir(Cn) = 3. 2
The irredundant number of a graph has certain properties that are also possessed by the

hull number of a graph. In [6], it was shown that if G is a connected graph of order n ≥ 2 and

diameter d, then h(G) ≤ n− d+ 1. The same result is also true for the irredundant number of

a graph.

Theorem 2.4 Let G be a connected graph of order n and diameter d. Then gir(G) ≤ n−d+1.

Proof Let S be any set of cardinality greater than n− d+ 1. Let P : u0, u1, · · · , ud = v be

a diameteral path in G. Since |S| > n− d+ 1, it follows that S contains at least three vertices

from the diameteral path P , say, ui, uj and uk with 0 ≤ i < j < k ≤ d. This implies that

uj ∈ I[ui, uk] and so S0 6= ∅. Thus gir(G) ≤ n− d+ 1. 2
We determine gir(T ) for T a tree.

Theorem 2.5 For any tree T with k end vertices, gir(T ) = k.

Proof Let S be a gir-set of T . Suppose that the set S contains a cut vertex, say, v of

T . Let C1, C2, . . . , Cl(l ≥ 2) be the components of T − v. It is clear that each component Ci

of T − v contains at least one end vertex, say, ui of T . Since S is an irredundant set of T

containing the cut vertex v, without loss of generality, we may assume that C1 ∩ S 6= φ and

Ci ∩ S = ∅ for all i = 2, 3, · · · , l. First, we prove that l = 2. Otherwise, if l ≥ 3, then the

set S′ = (S − {v}) ∪ {u2, u3} is an irredundant set in T with |S′| = gir(G) + 1. This is a

contradiction. Hence l = 2. Now, let S1 = (S − {v}) ∪ {u2}. Then S1 is an irredundant set of

cardinality gir(G). Moreover, S1 excludes the cut vertex v and includes a new end vertex u2.

We can continue this process until the resultant gir-set has no cut vertices. This is possible
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only when S has k vertices or less. Now, since the set of all end vertices of T is an irredundant

set, the result follows. 2
A caterpillar is a tree of order 3 or more, the removal of whose end-vertices produces a

path.

Theorem 2.6 For any non trivial tree T of order n and diameter d, gir(T ) = n− d+ 1 if and

only if T is a caterpillar.

Proof Let T be any non trivial tree. Let u, v be two vertices in T such that d(u, v) = d; and

let P : u = v0, v1, . . . , vd−1, vd = v be a diameteral path. Let k be the number of end vertices of

T and l the number of internal vertices of T other than v1, v2, . . . , vd−1. Then d−1+ l+k = n.

By Theorem 2.5, gir(T ) = k = n − d − l + 1. Hence gir(T ) = n − d + 1 if and only if l = 0,

if and only if all the internal vertices of T lie on the diameteral path P , if and only if T is a

caterpillar. 2
Remark 2.7 Every minimum hull set of a connected graph G contains its extreme vertices.

This is, in fact, true for non-minimum hull sets and follows directly from the fact that an

extreme vertex v is either an initial or terminal vertex of any geodesic containing v. One might

be led to believe that every maximum irredundant set of a graph G must contains its extreme

vertices, but this is not so, as the graph G in Figure 2.2, the set S = {u1, u2, u3, u4} is the

unique gir-set of G. Moreover, any irredundant set of G containing the extreme vertex u5 is of

cardinality less than or equal to 3.
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Remark 2.8 In a connected graph G, cut vertices do not belong to any h-set of G. But cut

vertices may belong to gir-sets of a graph. For the graphG in Figure 2.3, the set S = {u1, u2, u3}
is an gir-set containing the cut vertex u1.
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Figure 2.3
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Theorem 2.9 In a connected graph G, a cut vertex v belongs to an gir-set in G if and only if

G− v has exactly two components and at least one of them is K1.

Proof First, let S be an gir-set of G containing the cut vertex v. Suppose that G− v has

three components, say C1, C2 and C3. Since S is an irredundant set containing the cut vertex v,

it follows that S intersect with at most one of C1, C2 and C3. Assume without loss of generality

that S ∩V (C2) = ∅ and S ∩V (C3) = ∅. Choose vertices x and y in G such that x ∈ V (C2) and

y ∈ V (C3). Then it is obvious that the set T = (S − {v}) ∪ {x, y} is an irredundant set in G.

This is a contradiction to the maximality of S. Hence G−v has exactly two components, say C1

and C2. Now, suppose that C1 6= K1 and C2 6= K1. Then as above, we have that S∩V (C1) = ∅
or S ∩ V (C2) = ∅. Since |S| ≥ 2, we can assume that S ∩ V (C1) 6= ∅ and S ∩ V (C2) = ∅. Let x

and y be any two distinct vertices in C2. Then the set T = (S−{v})∪{x, y} is an irredundant

set in G, which is impossible. Hence either C1 = K1 or C2 = K1. Conversely, suppose that

G−v has exactly two components, say, C1 and C2 such that V (C1) = {u}. Let S be any gir-set

of G. Suppose that v /∈ S. Since S is a maximum irredundant set and V (C2) is convex in G,

it follows that the vertex u belongs to S. This implies that the set T = (S − {u}) ∪ {v} is an

irredundant set of cardinality gir(G) containing the cut vertex v. Hence the result follows. 2
Next theorem is a characterization of classes of graphs G for which gir(G) = 2. The length

of a shortest cycle in a connected graph G is the girth of G, denoted by girth(G).

Theorem 2.10 For a connected graph G, gir(G) = 2 if and only if G = Pn or G = C4.

Proof If G = Pn or G = C4, then it follows from Theorem 2.5 and Proposition 2.2 that

gir(G) = 2. Conversely, assume that gir(G) = 2. If G is acyclic, then it follows from Theorem

2.5 that G = Pn. So, assume that G contains cycles. First, we prove that girth(G) = 4.

Suppose that girth(G) = r ≥ 5. Let C : u1, u2, · · · , ur, u1 be a shortest cycle in G. If r = 2n,

then it clear that d(u1, un) = n− 1; d(u1, un+2) = n− 1 and d(un, un+2) = 2. Hence it follows

that the set S = {u1, un, un+2} is an irredundant set in G, which is a contradiction to the fact

that gir(G) = 2. Similarly, if r = 2n + 1, then we have that d(u1, un+1) = n; d(u1, un+2) = n

and d(un+1, un+2) = 1. Hence it follows that the set S = {u1, un+1, un+2} is an irredundant

set, which is also impossible. This implies that girth(G) ≤ 4. Now, if girth(G) = 3, then there

exist three mutually adjacent vertices in G, say, u, v and w and so G has an irredundant set of

cardinality 3. Therefore, we have that girth(G) = 4. Let C : u, v, w, x, u be a shortest cycle in

G. If G 6= C, then without loss of generality, we can assume that there exists a vertex y in G

such that y /∈ V (C) and y is adjacent to u in G. Since girth(G) = 4, it follows that y is not

adjacent to both x and v. This shows that the set T = {x, y, v} is an irredundant set in G,

which leads to a contradiction. Hence we have that G = C4. 2
For any connected graph G, we have that 2 ≤ h(G) ≤ gir(G). The following theorem is a

realization of this result.

Theorem 2.11 For every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G

such that h(G) = a and gir(G) = b.
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Proof If a = 2, then it follows from Theorem 1.2 and Proposition 2.2 that h(K2,b) = 2

and gir(K2,b) = b. So, assume that a > 2. Let G be the graph obtained from the complete

graph Kb with vertex set V (Kb) = {x1, x2, · · · , xb} by adding new vertices u and v; and the

edges uxi(1 ≤ i ≤ b − a + 2) and vxi(1 ≤ i ≤ b − a + 2). We first show that h(G) = a.

Since the set S = {u, v, xb−a+3, xb−a+4, · · · , xb} of all extreme vertices of G is a hull set of

G, it follows directly from Theorem 1.3 that h(G) = |S| = a. Also, it is clear that the set

T = {x1, x2, · · · , xb} is an irredundant set and so gir(G) ≥ |T | = b. Now, it follows from

Theorems 2.1 and 3.1 that gir(G) = b. 2
§3. Maximum Irredundant Subgraphs

In this section, we present a characterization of graphs of order n having the irredundant

number n− 1. By Theorem 2.5, the star K1,n−1 of order n ≥ 3, which can also be expressed as

K1 +Kn−1, has irredundant number n − 1. Our characterization of graphs of order n having

the irredundant number n − 1 shows that the class of stars can be generalized to produce all

graphs having the irredundant number n− 1.

Theorem 3.1 Let G be a connected graph of order n. Then gir(G) = n − 1 if and only if

G = K1 +
⋃

j mjKj with
∑
mj ≥ 2 or G = Kn − {e1, e2, · · · , ek} with 1 ≤ k ≤ n − 3, where

ei’s all are edges in Kn which are incident to a common vertex v.

Proof Suppose that G = K1 +
⋃

j mjKj and let v be the cut vertex of G. Then it is clear

that V − {v} is an irredundant set in G. Also, if G = Kn − {vx1, vx2, · · · , vxk}, then V − {v}
is an irredundant set in G. Hence it follows from Theorem 2.1 that gir(G) = n−1. Conversely,

assume that gir(G) = n− 1, then it follows from Theorems 2.1 and 2.4that diam(G) = 2 and

so G contains interior vertices. We consider the following two cases.

Case 1. G has a unique interior vertex, say v. Choose vertices u and w both are different

from v such that v ∈ I[u,w]. In this case, we prove that G = K1 +
⋃

j mjKj . For, if G has

no cut vertices, then the vertices u and w lie on a common cycle C; and so there exist vertices

x, y and z on the cycle C such that P : x, y, z is a geodesic of length 2 with y 6= v. This leads

to a contradiction and hence G has cut vertices. Now, since every cut vertex of G is also an

interior vertex, it follows that v is the only cut vertex in G. Since diam(G) = 2 and v is the

unique interior vertex in G, we have that the vertex v must be adjacent to every other vertices

in G. Now, let C1, C2, . . . Ck (k ≥ 2) be the components of G − v. We claim that each Ci is

complete. Suppose there exists j with 1 ≤ j ≤ k such that diam(Cj) ≥ 2. Then there exists a

geodesic Q : u1, u2, u3 in G with u2 6= v. This is a contradiction to the fact that v is the unique

interior vertex in G. Hence each component of G− v is complete and so G = K1 +
⋃

j mjKj.

Case 2. G has at least two interior vertices. Let S be an irredundant set of cardinality n− 1

and let V − S = {v}. We first claim that < S > is complete. If not, assume that there exist

vertices x and y in S which are not adjacent in G. Then d(x, y) = 2. Also, since S is an

irredundant set of cardinality n − 1, we have that v is the only vertex adjacent to both x and

y in G. Moreover, one can observe that if u1 and u2 are non-adjacent vertices in S, then the
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vertex v is only vertex adjacent to both u1 and u2 in G. Now, Since G contains at least two

interior vertices, it follows that there exist vertices u and z in G such that u 6= z and z ∈ I[u, v].

It follows from the above observation that the vertex u is adjacent to both x and y. Hence

u ∈ S0. This is a contradiction. Thus < S > is complete. Now, since G is connected. By

Theorem 2.1, we have that G = Kn − {vx1, vx2, · · · , vxk}. 2
We now introduce a concept that will turn out to be closely connected to the result already

stated in this section. A graph H is called a maximum irredundant subgraph, if there exists a

graph G containing H as an induced subgraph such that V (H) is a maximum irredundant set

of G. For example, consider the graphs H and G in Figure 3.1. It follows from Theorems 2.1

and 3.1 that the irredundant set S = {u, v, w} is maximum in G, and H is an induced subgraph

of G. Hence H is a maximum irredundant subgraph of the graph G. Also, by Theorem 3.1,

for positive integers n1, n2, · · · , nr with r ≥ 1, the graph Kn1 ∪Kn2 ∪ · · · ∪Knr
is a maximum

irredundant subgraph. The analog concepts of minimum hull subgraph was studied in [3]. A

graph H is a minimum hull subgraph if there exists a graph G containing H as an induced

subgraph such that V (H) is a minimum hull set of G. Next, we characterize the class of all

maximum irredundant subgraphs.
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Figure 3.1 G&H

Theorem 3.2 A non trivial graph H is a maximum irredundant subgraph of some connected

graph if and only if every component of H is complete.

Proof First, letH be a maximum irredundant subgraph of a connected graphG. Assume to

the contrary, that H contains a component that is not complete. Then there exist u, v ∈ V (H)

such that dH(u, v) = 2 and so H has at least one vertex, say, w different from both u and v

such that w lies on some u − v geodesic in H . This is a contradiction to the fact that V (H)

is an irredundant set in G. We now verify the converse. Let H be a graph such that every

component of H is complete. If H is connected, then H is the maximum irredundant subgraph

of H itself. Otherwise, H = Kn1 ∪Kn2 ∪ · · · ∪Knr
for positive integers n1, n2, · · · , nr, where

r ≥ 2. Let G = K1 + H . Then by Theorem 3.1, V (H) is a maximum irredundant set in G.

This completes the proof. 2
We leave the following problem as open.

Problem 3.3 Characterize the classes of graphs G for which gir(G) = h(G).
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Abstract: For an arborescence T , a directed pathos block line cut-vertex digraph Q =

DPBLc(T ) has vertex set V (Q) = A(T ) ∪ C(T ) ∪ B(T ) ∪ P (T ), where C(T ) is the cut-

vertex set, B(T ) is the block set, and P (T ) is a directed pathos set of T . The arc set A(Q)

consists of the following arcs: ab such that a, b ∈ A(T ) and the head of a coincides with the

tail of b; Cd such that C ∈ C(T ) and d ∈ A(T ) and the tail of d is C; dC such that C ∈ C(T )

and d ∈ A(T ) and the head of d is C; Bc such that B ∈ B(T ) and c ∈ A(T ) and the arc c

lies on the block B; Pa such that a ∈ A(T ) and P ∈ P (T ) and the arc a lies on the directed

path P ; PiPj such that Pi, Pj ∈ P (T ) and it is possible to reach the head of Pj from the

tail of Pi through a common vertex, but it is possible to reach the head of Pi from the tail

of Pj . The problem of reconstructing an arborescence from its DPBLc(T ) is discussed. We

present the characterization of digraphs whose DPBLc(T ) are planar and outer planar. In

addition, a necessary and sufficient condition for DPBLc(T ) to have crossing number one

is presented. Further we show that for any arborescence T , DPBLc(T ) never be maximal

outer planar and minimally nonouterplanar.

Key Words: Crossing number, inner vertex number, complete bipartite digraph.

AMS(2010): 05C20

§1. Introduction

We shall assume that the reader is familiar with the standard terminology on graphs and

digraphs and refer the reader to [1,4]. The concept of pathos of a graph G was introduced by

Harary [2] as a collection of minimum number of edge disjoint open paths whose union is G.

The path number of a graph G is the number of paths in any pathos. The path number of

1Received May 18, 2016, Accepted November 26, 2016.
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a tree T equals k, where 2k is the number of odd degree vertices of T . Harary [3] and Stanton

[8] calculated the path number of certain classes of graphs like trees and complete graphs.

H. M. Nagesh and R. Chandrasekhar [7] introduced the concept of a pathos block line

cut-vertex graph of a tree.

A pathos block line cut-vertex graph of a tree T , written PBLc(T ), is a graph whose

vertices are the edges, paths of a pathos, cut-vertices, and blocks of T , with two vertices of

PBLc(T ) adjacent whenever the corresponding edges of T are adjacent or the edge lies on the

corresponding path of the pathos or the edge incident with the cut-vertex or the edge lies on the

corresponding block; two distinct pathos vertices Pm and Pn of PBLc(T ) are adjacent whenever

the corresponding paths of the pathos Pm(vi, vj) and Pn(vk, vl) have a common vertex.

The characterization of graphs whose PBLc(T ) are planar, outer planar, maximal outer

planar, and minimally nonouterplanar were presented.

In this paper, we extend the definition of a pathos block line cut-vertex graph of a tree

to an arborescence. Furthermore, some of its characterizations such as the planarity, outer

planarity, etc., are discussed.

We need some concepts and notations on directed graphs. A directed graph (or just

digraph) D consists of a finite non-empty set V (D) of elements called vertices and a finite

set A(D) of ordered pair of distinct vertices called arcs. Here V (D) is the vertex set and A(D)

is the arc set of D. If (u, v) or uv is an arc in D, then we say that u is a neighbor of v. A

digraph D is semicomplete if for each pair of distinct vertices u and v, at least one of the arcs

(u, v) and (v, u) exists in D. A semicomplete digraph of order n is denoted by Dn.

For a connected digraph D, a vertex z is called a cut-vertex if D− {z} has more than one

connected component. A block B of a digraph D is a maximal weak subdigraph of D, which

has no vertex v such that B − v is disconnected. An entire digraph is a block if it has only

one block. There are exactly three categories of blocks: strong, strictly unilateral, and strictly

weak”. The out-degree of a vertex v, written d+(v), is the number of arcs going out from v

and the in-degree of a vertex v, written d−(v), is the number of arcs coming into v. The total

degree of a vertex v, written td(v), is the number of arcs incident with v. We immediately have

td(v) = d−(v) + d+(v).

A vertex with an in-degree (out-degree) zero is called a source (sink). The directed path

on n ≥ 2 vertices is the digraph ~Pn = {V (~Pn), E(~Pn), η}, where V (~Pn) = {u1, u2, · · · , un},
E(~Pn) = {e1, e2, · · · , en−1}, where η is given by η(ei) = (ui, ui+1), for all i ∈ {1, 2, · · · , (n−1)}.

An arborescence is a directed graph in which, for a vertex u called the root (a vertex of

in-degree zero) and any other vertex v, there is exactly one directed path from u to v. We shall

use T to denote an arborescence. A root arc of T is an arc which is directed out from the root

of T , i.e., an arc whose tail is the root of T .

Since most of the results and definitions for undirected planar graphs are valid for planar

digraphs also, the following definitions hold good for planar digraphs.

If D is a planar digraph, then the inner vertex number i(D) of D is the minimum number

of vertices not belonging to the boundary of the exterior region in any embedding of D in the

plane. A digraph D is outerplanar if i(D) = 0 and minimally nonouterplanar if i(D) = 1 [5].

The crossing number of a digraph D, denoted by cr(D), is the minimum number of crossings



146 H. M. Nagesh, R. Chandrasekhar and M. C. Mahesh Kumar

of its arcs when the digraph D is drawn in the plane.

§2. Definitions

Definition 2.1 The line digraph L(D) of a digraph D has the arcs of D as vertices. There is

an arc from D− arc pq towards D− arc uv if and only if q = u.

Definition 2.2 If a directed path ~Pn starts at one vertex and ends at a different vertex, then
~Pn is called an open directed path.

Definition 2.3 The directed pathos of an arborescence T is defined as a collection of minimum

number of arc disjoint open directed paths whose union is T .

Definition 2.4 The directed path number k
′

of T is the number of open directed paths in any

directed pathos of T , and is equal to the number of sinks in T .

Definition 2.5 For an arborescence T , a directed pathos line cut-vertex digraph Q = DPLc(T )

has vertex set V (Q) = A(T ) ∪ C(T ) ∪ P (T ), where C(T ) is the cut-vertex set and P (T ) is a

directed pathos set of T . The arc set A(Q) consists of the following arcs: ab such that a, b ∈ A(T )

and the head of a coincides with the tail of b; Cd such that C ∈ C(T ) and d ∈ A(T ) and the tail

of d is C; dC such that C ∈ C(T ) and d ∈ A(T ) and the head of d is C; Pa such that a ∈ A(T )

and P ∈ P (T ) and the arc a lies on the directed path P ; PiPj such that Pi, Pj ∈ P (T ) and it is

possible to reach the head of Pj from the tail of Pi through a common vertex, but it is possible

to reach the head of Pi from the tail of Pj .

Definition 2.6 For an arborescence T , a directed pathos block line cut-vertex digraph Q =

DPBLc(T ) has vertex set V (Q) = A(T ) ∪ C(T ) ∪ B(T ) ∪ P (T ), where C(T ) is the cut-vertex

set, B(T ) is the block set, and P (T ) is a directed pathos set of T . The arc set A(Q) consists of

the following arcs: ab such that a, b ∈ A(T ) and the head of a coincides with the tail of b; Cd

such that C ∈ C(T ) and d ∈ A(T ) and the tail of d is C; dC such that C ∈ C(T ) and d ∈ A(T )

and the head of d is C; Bc such that B ∈ B(T ) and c ∈ A(T ) and the arc c lies on the block B;

Pa such that a ∈ A(T ) and P ∈ P (T ) and the arc a lies on the directed path P ; PiPj such that

Pi, Pj ∈ P (T ) and it is possible to reach the head of Pj from the tail of Pi through a common

vertex, but it is possible to reach the head of Pi from the tail of Pj .

Note that the directed path number k′ of an arborescence T is minimum only when the

out-degree of the root of T is one. Therefore, unless otherwise specified, the out- degree of the

root of every arborescence is exactly one. Finally, we assume that the direction of the directed

pathos is along the direction of the arcs in T . Since the pattern of directed pathos for an

arborescence is not unique, the corresponding directed pathos block line cut-vertex digraph is

also not unique.

§3. Basic Properties of DPBLc(T )
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Remark 3.1 Since every arc of T is a block (strictly unilateral), the arcs directed out of block

vertices reaches the vertices of L(T ) does not affect the crossing number of DPBLc(T ).

Observation 3.2 If T is an arborescence of order n (n ≥ 3), then L(T ) ⊆ Lc(T ) ⊆ DPLc(T ) ⊆
DPBLc(T ).

Remark 3.3 The number of arcs whose tail and head are the directed pathos vertices in

DPBLc(T ) is k
′ − 1.

Proposition 3.4 Let T be an arborescence with vertex set V (T ) = {v1, v2, · · · , vn}, cut-vertex

set C(T ) = {C1, C2, · · · , Cr}, and block set B(T ) = {B1, B2, · · · , Bs}. Then the order and size

of DPBLc(T ) are

2(n− 1) + k
′

+

r∑

j=1

Cj and

n∑

i=1

d−(vi) · d+(vi) +

r∑

j=1

{d−(Cj) + d+(Cj)} + k
′

+ 2n− 3,

respectively.

Proof Let T be an arborescence with vertex set V (T ) = {v1, v2, · · · , vn}, cut-vertex

set C(T ) = {C1, C2, · · · , Cr}, and block set B(T ) = {B1, B2, · · · , Bs}. Then the order of

DPBLc(T ) equals the sum of size, cut-vertices, blocks, and the directed path number k
′

of T .

Since every arc of an arborescence is a block, the order of DPBLc(T ) is

n− 1 +

r∑

j=1

Cj + n− 1 + k
′

,

⇒ 2(n− 1) + k
′

+

r∑

j=1

Cj .

The size of DPBLc(T ) equals the sum of size of T and L(T ); total degree of cut-vertices;

and the number of arcs whose tail and head are the directed pathos vertices. By Remark 3.3,

the size of DPBLc(T ) is,

n∑

i=1

d−(vi) · d+(vi) +

r∑

j=1

{d−(Cj) + d+(Cj)} + 2(n− 1) + k
′ − 1,

⇒
n∑

i=1

d−(vi) · d+(vi) +

r∑

j=1

{d−(Cj) + d+(Cj)} + k
′

+ 2n− 3. 2
§4. A Criterion for Directed Pathos Block Line Cut-Vertex Digraphs

The main objective is to determine a necessary and sufficient condition that a digraph be a

directed pathos block line cut-vertex digraph.

A complete bipartite digraph is a directed graph D whose vertices can be partitioned into

non-empty disjoint sets A and B such that each vertex of A has exactly one arc directed towards

each vertex of B and such that D contains no other arc.
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Theorem 4.1 A digraph T
′

is a directed pathos block line cut-vertex digraph of an arborescence

T if and only if V (T
′

) = A(T ) ∪ C(T ) ∪B(T ) ∪ P (T ) and arc sets

(1) ∪n
i=1Xi × Yi, where Xi and Yi are the sets of in-coming and out-going arcs at vi of T ,

respectively;

(2) ∪r
j=1 ∪r

k=1 Z
′

j × Ck such that Z
′

j × Ck = φ for j 6= k;

(3) ∪r
k=1 ∪r

j=1 Ck × Zj such that Ck × Zj = φ for k 6= j, where Z
′

j and Zj are the sets of

in-coming and out-going arcs at Ck of T , respectively.

(iv) ∪t
k=1 ∪t

j=1 Pk × Yj such that Pk × Yj = φ for k 6= j;

(4) ∪t
k=1 ∪t

j=1 Pk × Y
′

j such that Pk × Y
′

j = φ for k 6= j, where Yj is the set of arcs on

which Pk lies and Y
′

j is the set of directed paths whose heads are reachable from the tail of Pk

through a common vertex in T ;

(5) ∪s
l=1 ∪s

l′=1
Bl ×Nl′ such that Bl ×Nl′ = φ for l 6= l

′

, where Nl′ is the set of arcs lies

on Bl in T .

Proof Let T be an arborescence with vertex set V (T ) = {v1, v2, · · · , vn}, cut-vertex set

C(T ) = {C1, C2, · · · , Cr}, block setB(T ) = {B1, B2, · · · , Bs}, and a directed pathos set P (T ) =

{P1, P2, · · · , Pt}. We consider the following cases.

Case 1. Let v be a vertex of T with d−(v) = α and d+(v) = β. Then α arcs coming into v

and the β arcs going out of v give rise to a complete bipartite subdigraph with α tails and β

heads and α · β arcs joining each tail with each head. This is the decomposition of L(T ) into

mutually arc disjoint complete bipartite subdigraphs.

Case 2. Let Ci be a cut-vertex of T with d−(Ci) = α
′

. Then α
′

arcs coming into Ci give rise

to a complete bipartite subdigraph with α
′

tails and a single head (i.e., Ci) and α
′

arcs joining

each tail with Ci.

Case 3. Let Ci be a cut-vertex of T with d+(Ci) = β
′

. Then β
′

arcs going out of Ci give rise

to a complete bipartite subdigraph with a single tail (i.e., Ci) and β
′

heads and β
′

arcs joining

Ci with each head.

Case 4. Let Pj be a directed path which lies on α
′′

arcs in T . Then α
′′

arcs give rise to a

complete bipartite subdigraph with a single tail (i.e., Pj) and α
′′

heads and α
′′

arcs joining Pj

with each head.

Case 5. Let Pj be a directed path, and let β
′′

be the number of directed paths whose heads

are reachable from the tail of Pj through the common vertex in T . Then β
′′

arcs give rise to a

complete bipartite subdigraph with a single tail (i.e., Pj) and β
′′

heads and β
′′

arcs joining Pj

with each head.

Case 6. Let Bp be a block of T . Then the arcs, say γ lies on Bp give rise to a complete

bipartite subdigraph with a single tail (i.e., Bp) and γ heads and γ arcs joining Bp with each

head.

Hence by all the above cases, Q = DPBLc(T ) is decomposed into mutually arc-disjoint

complete bipartite subdigraphs with V (Q) = A(T ) ∪ C(T ) ∪ B(T ) ∪ P (T ) and arc sets (i)

∪n
i=1Xi×Yi, whereXi and Yi are the sets of in-coming and out-going arcs at vi of T , respectively.
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(2) ∪r
j=1 ∪r

k=1 Z
′

j × Ck such that Z
′

j × Ck = φ for j 6= k.

(3) ∪r
k=1 ∪r

j=1 Ck × Zj such that Ck × Zj = φ for k 6= j, where Z
′

j and Zj are the sets of

in-coming and out-going arcs at Ck of T , respectively.

(4) ∪t
k=1 ∪t

j=1 Pk × Yj such that Pk × Yj = φ for k 6= j.

(5) ∪t
k=1 ∪t

j=1 Pk × Y
′

j such that Pk × Y
′

j = φ for k 6= j, where Yj is the set of arcs on

which Pk lies and Y
′

j is the set of directed paths whose heads are reachable from the tail of Pk

through a common vertex in T .

(6) ∪s
l=1 ∪s

l′=1
Bl ×Nl′ such that Bl ×Nl′ = φ for l 6= l

′

, where Nl′ is the set of arcs lies

on Bl in T .

Conversely, let T
′

be a digraph of the type described above. Let t1, t2, · · · , tl be the vertices

corresponding to complete bipartite subdigraphs T1, T2, · · · , Tl of Case 1, respectively; and let

w1, w2, · · · , wt be the vertices corresponding to complete bipartite subdigraphs P
′

1, P
′

2, · · · , P
′

t

of Case 4, respectively. Finally, let t0 be a vertex chosen arbitrarily.

For each vertex v of the complete bipartite subdigraphs T1, T2, · · · , Tl, we draw an arc av

as follows.

(a) If d+(v) > 0, d−(v) = 0, then av := (t0, ti), where i is the base (or index) of Ti such

that v ∈ Yi.

(b) If d+(v) > 0, d−(v) > 0, then av := (ti, tj), where i and j are the indices of Ti and Tj

such that v ∈ Xj ∩ Yi.

(c) If d+(v) = 0, d−(v) = 1, then av := (tj , w
n) for 1 ≤ n ≤ t, where j is the base of Tj

such that v ∈ Xj .

Note that, in (tj , w
n) no matter what the value of j is, n varies from 1 to t such that the

number of arcs of the form (tj , w
n) is exactly t.

We mark the cut-vertices as follows. From Case 2 and Case 3, we observe that for every

cut vertex C, there exists exactly two complete bipartite subdigraphs, one containing C as the

tail, and other as head. Let it be C
′

j and C
′′

j for 1 ≤ j ≤ r such that C
′

j contains C as the tail

and C
′′

j as head. If the heads of C
′

j and tails of C
′′

j are the heads and tails of a single Ti for

1 ≤ i ≤ l, then the vertex ti is a cut-vertex, where i is the index of Ti.

We now mark the directed pathos as follows. It is easy to observe that the directed path

number k
′

equals the number of subdigraphs of Case 4. Let ψ1, ψ2, · · · , ψt be the number of

heads of subdigraphs P
′

1, P
′

2, · · · , P
′

t , respectively. Suppose we mark the directed path P1. For

this we choose any ψ1 number of arcs and mark P1 on ψ1 arcs. Similarly, we choose ψ2 number

of arcs and mark P2 on ψ2 arcs. This process is repeated until all directed pathos are marked.

The digraph T with directed pathos and cut-vertices thus constructed apparently has T
′

as

directed pathos block line cut- vertex digraph. 2
Given a directed pathos block line cut-vertex digraph Q, the proof of the sufficiency of

above theorem shows how to find an arborescence T such that DPBLc(T ) = Q. This obviously

raises the question of whether Q determines T uniquely. Although the answer to this in general

is no, the extent to which T is determined is given as follows.

One can easily check that using reconstruction procedure of the sufficiency of above the-

orem, any arborescence (without directed pathos) is uniquely reconstructed from its directed
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pathos block line cut-vertex digraph. Since the pattern of directed pathos for an arborescence is

not unique, there is freedom in marking directed pathos for an arborescence in different ways.

This clearly shows that if the directed path number is one, any arborescence with directed

pathos is uniquely reconstructed from its directed pathos block line cut-vertex digraph. It is

known that a directed path is a special case of an arborescence. Since the directed path number

k
′

of a directed path ~Pn of order n (n ≥ 3) is exactly one, a directed path with a directed pathos

is uniquely reconstructed from its directed pathos block line cut-vertex digraph.

§5. Characterization of DPBLc(T )

Theorem 5.1 A directed pathos block line cut-vertex digraph DPBLc(T ) of an arborescence

T is planar if and only if the total degree of each vertex of T is at most three.

Proof Suppose DPBLc(T ) is planar. Assume that td(v) ≥ 4, for every vertex v ∈ T .

Suppose there exists a vertex v of total degree four in T , that is, T is an arborescence whose

underlying graph is K1,4. Let V (T ) = {a, b, c, d, e} and A(T ) = {(a, c), (c, b), (c, d), (c, e)}
such that a and (a, c) are the root and root arc of T , respectively. By definition, A(L(T )) =

{(ac, cb), (ac, cd), (ac, ce)}. Since c is the cut-vertex of T , it is the tail of arcs (c, b), (c, d), (c, e);

and the head of an arc (a, c). Then c is a neighbor of vertices cb, cd, ce; and ac is a neighbor of

c. This shows that cr(Lc(T )) = 0. Let P (T ) = {P1, P2, P3} be a directed pathos set of T such

that P1 lies on the arcs (a, c), (c, b); P2 lies on (c, d); and P3 lies on (c, e). Then P1 is a neighbor

of ac, cb, P2, P3; P2 is a neighbor of cd; and P3 is a neighbor of ce. Clearly cr(DPLc(T )) = 1.

By Remark 3.1, cr(DPBLc(T )) = 1, a contradiction.

Conversely, suppose that the total degree of each vertex of T is at most three. Let V (T ) =

{v1, v2, · · · , vn} and A(T ) = {e1, e2, · · · , en−1} such that v1 and e1 = (v1, v2) are the root and

root arc of T , respectively. By definition, L(T ) is an out-tree of order n − 1. The number

of cut-vertices of T equals the number of vertices whose total degree is at least two. Then

Lc(T ) is a connected digraph in which every block is either D3 or D4 − e. Furthermore, the

directed path number k
′

is the number of sinks in T . Then the arcs joining vertices of L(T )

and directed pathos vertices; and arcs joining directed pathos vertices gives DPLc(T ) such that

cr(DPLc(T )) = 0. By Remark 3.1, cr(DPBLc(T )) = 0. This completes the proof. 2
Theorem 5.2 A directed pathos block line cut-vertex digraph DPBLc(T ) of an arborescence

T is outer planar if and only if T is a directed path ~Pn of order n (n ≥ 3).

Proof Suppose DPBLc(T ) is outer planar. Assume that T is an arborescence whose

underlying graph is K1,3. Let V (T ) = {a, b, c, d} and A(T ) = {(a, b), (b, c), (b, d)} such that

a and (a, b) are the root and root arc of T , respectively. Then A(L(T )) = {(ab, bc), (ab, bd)}.
Since b is the cut-vertex of T , it is the tail of arcs (b, c), (b, d); and the head of an arc (a, b). By

definition, Lc(T ) = D4 − e. Clearly i(Lc(T )) = 0. Let P (T ) = {P1, P2} be a directed pathos

set of T such that P1 lies on the arcs (a, b), (b, c); and P2 lies on (b, d). Then P1 is a neighbor

of ab, bc, P2; and P2 is a neighbor of bd. This shows that i(DPLc(Ar)) = 1. Since every arc

of T is a block, let B1, B2, B3 be blocks corresponding to arcs (a, b), (b, c), (b, d), respectively.
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Then the arcs joining B1 and ab; B2 and bc; and B3 and bd increases the inner vertex number

of DPLc(T ) by one. Thus i(DPBLc(T )) = 2, a contradiction.

Conversely, suppose that T is a directed path of order n (n ≥ 3). Let V (T ) = {v1, v2, · · · , vn}
and A(T ) = {e1, e2, · · · , en−1}. Clearly, the directed path number of T is one. Then the un-

derlying graph of DPL(T ) is the fan graph F1,n−1. Let C(T ) = {C1, C2, · · · , Cn−2} be the

cut-vertex set of T such that the arcs ei are directed into the cut-vertices Ci, and ei+1 are

directed out of Ci for 1 ≤ i ≤ n− 2. Then the vertices ei are the neighbors of Ci, and Ci are

the neighbors of ei+1. This shows that i(DPLc(T )) = 0. Since every arc of T is a block, by

Remark 3.1, i(DPBLc(T )) = 0. 2
Theorem 5.3(F. Harary, [1]) Every maximal outer planar graph G with n vertices has 2n− 3

edges.

Theorem 5.4 For any arborescence T , DPBLc(T ) is not maximal outerplanar.

Proof We use contradiction. Suppose that DPBLc(T ) is maximal outer planar. We

consider the following three cases.

Case 1. Suppose that td(v) ≥ 4, for every vertex v ∈ T . By Theorem 5.1, DPBLc(T ) is

nonplanar, a contradiction.

Case 2. Suppose there exits a vertex of total degree three in T . By necessity of Theorem 5.2,

DPBLc(T ) nonouterplanar, a contradiction.

Case 3. Suppose that T is a directed path ~Pn of order n (n ≥ 3). By Proposition 3.4, the

order and size of DPBLc(T ) are 3α+3 and 5α+2, respectively, where α = (n−2), n ≥ 3. But

5α + 2 < 6α + 3 = 2(3α + 3) − 3. By Theorem 5.3, DPBLc(T ) is not maximal outerplanar,

again a contradiction. Hence by all the above cases, DPBLc(T ) is not maximal outerplanar.2
Theorem 5.5 For any arborescence T , DPBLc(T ) is not minimally nonouter planar.

Proof We use contradiction. Suppose that DPBLc(T ) is minimally nonouter planar. We

consider the following three cases.

Case 1. Suppose that td(v) ≥ 4, for every vertex v ∈ T . By Theorem 5.1, DPBLc(T ) is

nonplanar, a contradiction.

Case 2. Suppose there exits a vertex of total degree three in T . By necessity of Theorem 5.2,

i(DPBLc(T )) = 2, a contradiction.

Case 3. Suppose that T is a directed path ~Pn of order n (n ≥ 3). By Theorem 5.2, DPBLc(T )

is outer planar, again a contradiction. Hence by all the above cases,DPBLc(T ) is not minimally

nonouterplanar. 2
Theorem 5.6 A directed pathos block line cut-vertex digraph DPBLc(T ) of an arborescence

T has crossing number one if and only if the underlying graph of T is K1,4.
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Proof Suppose DPBLc(T ) has crossing number one. Assume that T is an arborescence

whose underlying graph is a star graph K1,n on n ≥ 5 vertices. Suppose T = K1,5. Let

V (T ) = {a, b, c, d, e, f} and A(T ) = {(a, c), (c, b), (c, d), (c, e), (c, f)} such that a and (a, c) are

the root and root arc of T , respectively. Then A(L(T )) = {(ac, cb), (ac, cd), (ac, ce), (ac, cf)}.
Since c is the cut-vertex of T , it is the tail of arcs (c, b), (c, d), (c, e), (c, f); and the head of an

arc (a, c). Then c is a neighbor of vertices cb, cd, ce, cf ; and ac is a neighbor of c. This shows

that cr(Lc(T )) = 0. Let P (T ) = {P1, P2, P3, P4} be a directed pathos set of T such that P1 lies

on the arcs (a, c), (c, b); P2 lies on (c, d); P3 lies on (c, e); and P4 lies on (c, f). Then P1 is a

neighbor of ac, cb, P2, P3, P4; P2 is a neighbor of cd; P3 is a neighbor of ce; and P4 is a neighbor

of cf . This shows that cr(DPLc(T )) = 2. By Remark 3.1, cr(DPBLc(T )) = 2, a contradiction.

Conversely, suppose that T is an arborescence whose underlying graph isK1,4. By necessity

of Theorem 5.1, cr(DPBLc(T )) = 1. This completes the proof. 2
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Abstract: The present paper deals with a spherical chain whose centers lie on a horizontal

plane which can be drawn inside a spherical fragment and we display some geometric prop-

erties related to the chain itself. Here, we also grant recursive and non recursive formulas

for calculating the coordinates of the centers and the radii of the spheres.
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§1. Introduction

Let us consider a sphere “ABEFA” with diameter AE and center L. If we cut this sphere

by a plane, parallel to the coordinate planes then we get a circle and this intersection plane

that contains the circle is nothing but the Y1 = 0 plane. Because we construct the coordinate

system at the point I (see Figure 1), it is the intersection between the diameter(AE) of the

sphere“ABEFA” and the plane Y1 = 0. It is possible to construct an infinite chain of spheres

inside a spherical fragment where the centers of all sphere of the chain lie on a horizontal plane,

parallel to the X1Y1 plane or may be X1Y1 plane and each sphere tangent to the plane Y1 = 0

and spherical fragment, that contains FEB and to its two immediate neighbors.

Let 2(a1 + b1) be the diameter of the sphere and 2b1 be the length of the segment IE.

Here we have set up a Cartesian coordinate system with origin at I and let us consider sphere

with center (x1
i , y

1
i , k1) which lie on a horizontal plane, parallel to the x1y1 plane or may be

x1y1 plane, it depends upon the value of k1 and radius r10 tangent to the plane Y1 = 0 and the

spherical fragment, that containing FEB. Now, we construct a infinite chain of tangent spheres,

with centers (x1
i , y

1
i , k1) which lie on a horizontal plane, parallel to the X1Y1 plane or may be

X1Y1 plane, it depends upon the value of k1 and radii r1i for integer value of i, positive and

negative and k1 is fixed but the values of k1 may be positive, negative or zero. That means for

particular values of k1, we get a sequence of horizontal planes parallel to X1Y1 plane. Therefore

1Received June 23, 2016, Accepted November 28, 2016.
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if we consider any horizontal parallel plane corresponding to the X1Y1 plane then there exist a

spherical chain for which the center of the spheres of the spherical chains lies on that plane.

In this paper, we have learnt that the locus of the centers of the spherical chain mentioned

above is a certain type of curve. Here, we have exhibited that locus of the point of centers

of the spheres of the chain lie on a sphere. We have also inferred recursive and non recursive

formulae to find coordinates of centers and radii of the spheres of a spherical chain.

§2. Some Geometric Properties of the Spherical Chain

Here we have speculated some basic properties of the infinite chain of spheres as mentioned

above.
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Proposition 2.1 The centers of the spheres of the spherical chain on a horizontal plane, lie

on a parabola with axis parallel to Y1-axis, focus is at a height k1 from L and the vertex is at

(0, b1 − k2

4a1
, k1). If we draw Figure 2.1 explicitly, then

Proof Let us consider a sphere of the chain with center I1(x
1, y1, k1), lie on a horizontal

plane which is parallel to the coordinate plane X1Y1, diameter GH , radius r1, tangent to the

spherical arc FEB at S. Since LS contains I1 (see Figure 2.2), we have by taking into account

that L, where L is the center of the sphere which contains the spherical chains, has coordinate

(0, b1 − a1, 0) and

LS = a1 + b1,

LI1 =
√

(x1)2 + (y1 − b1 + a1)2 + (k1)2,

I1S = GI1 = r1 = y1.

Now, it is clear that

LI1 = LS − I1S.

From these, we have

√
(x1)2 + (y1 − b1 + a1)2 + (k1)2 = a1 + b1 − y1,

which simplifies into

(x1)2 = −4a1

{
y1 − (b1 −

k2
1

4a1
)

}
. (1)

This clearly represents a parabola which is symmetric with respect to the axis parallel to Y1-

axis with vertex
(
0, b1 − (k1)

2

4a1
, k1

)
and focus

(
0, b1 − a1 − (k1)2

4a1
, k1

)
, where L is the center of

the sphere. 2
Proposition 2.2 The points of tangency between consecutive spheres of the chain lie on a

sphere.
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Proof Consider two neighboring spheres with centers (x1
i , y

1
i , k1), (x1

i+1, y
1
i+1, k1), radii r1i ,

r1i+1 respectively, tangent to each other at Ui, see Figure 3.

By using Proposition 2.1 and noting that A has coordinate (0,−2a1, 0), we have

AI2
i = (x1

i )
2 + (y1

i + 2a1)
2 + (k1)

2 = (x1
i )

2 +

{
− (x1)2

4a1
+ b1 −

(k1)
2

4a1

}2

+ (k1)
2,

(r1i )2 = (y1
i )2 =

{
− (x1)2

4a1
+ b1 −

k2
1

4a1

}2

.

Applying the Pythagorean theorem to the right triangle AIiUi, we have

AU2
i = AI2

i − (r1i )2 = 4a1(a1 + b1) = AI.AE = AF 2.

Thus it follows that Ui lie on the sphere with center at A and radius AF . 2
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Proposition 2.3 If a sphere of the chain touches the plane Y1 = 0 at G and touches the

spherical fragment FEB at S, then the points A (end point of the diameter opposite to plane

Y1 = 0), G,S are collinear.

Proof Suppose a sphere has center I1 of a spherical chain which touches the plane Y1 = 0

at G and the spherical fragment FEB at S, see Figure 4. Note that triangles LAS and I1GS are

isosceles triangles where ∠LSA = ∠LAS = ∠I1SG = ∠I1GS. Thus A,G, S must be collinear

as the triangles LAS and I1GS are similar.

§3. Recursive and Non-Recursive Formulae to Find Coordinates of Centers and

Radii of the Spheres of a Spherical Chain

From Figure 5, the triangle IiIi−1Ai is right angle triangle (as IiAi is perpendicular drawn on

r1i−1) with the centers Ii−1 and Ii of two neighboring spheres of the chain.

Since these spheres have radii r1i−1 = y1
i−1 and r1i = y1

i respectively, we have

(x1
i − x1

i−1)
2 + (y1

i − y1
i−1)

2 + (k1 − k1)
2 = (r1i + r1i−1)

2 = (y1
i + y1

i−1)
2,

(x1
i − x1

i−1)
2 = 4y1

i y
1
i−1.

Using (1), we can write

(x1
i − x1

i−1)
2 = 4

{
b1 −

k2
1

4a1
− (x1

i )
2

4a1

}{
b1 −

k2
1

4a1
− (x1

i−1)
2

4a1

}
,

or

4a1

{
a1 + b1 − k2

1/4a1

}
− (x1

i−1)2

4a2
1

.(x1
i )2−2x1

i−1x1
i +

{
a1 + b1 − k2

1/4a1

}
x2

i−1 − 4a1

{
b1 − k2

1/4a1

}2

a1
= 0. (2)

If we index the spheres in the chain in such a way that the coordinate x1
i increases with
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the index i, then from (2) we have

x1
i =

2x1
i−1 −

{
(x1

i−1)
2/a1 − 4(b1 − k2

1/4a1)
}√

1 +
(b1−k2

1/4a1)
a1

2
{
1 +

(b1−k2
1/4a1)

a1
− (x1

i−1)
2

4a2
1

} . (3)

This is a recursive formula that can be applied provided that x1
0 of the first circle is known.

Note that x1
0 must be chosen in the interval

{
−2
√
a1(b1 − k2

1/4a1), 2
√
a1(b1 − k2

1/4a1)
}

. Now

the z1 coordinate is k1 and y1
i are radii derived from (1), by

y1
i = r1i = b1 −

k2
1

4a1
− (x1)2i

4a1
. (4)

Now, it is possible to transform the recursion formula into a continued fraction and after

some calculations, we get

x1
i = 2a1

{√

1 +
(b1 − k2

1/4a1)

a1
− 1

x1
i−1

2a1
+
√

1 + (b1−k2/4a1)
a1

}
. (5)

Let

℘ = 2

√

1 +
(b1 − k2

1/4a1)

a1
, and ξi =

x1
i

2a1
−
√

1 +
(b1 − k2

1/4a1)

a1
, i = 1, 2, ..., (6)

then, we have

ξi = − 1

℘+ ξi−1
.

Thus, for positive integral values of i,

ξi = − 1

℘− 1
℘− 1

...

− 1
℘+ξ0+

.

Here we have used ξ0+ in place of ξ0 and

ξ0+ =
x1

0

2a1
−
√

1 +
(b1 − k2

1/4a1)

a1
.

Now, if we solve equation (2) for x1
i−1 then we get

x1
i−1 =

2x1
i +

{
(x1

i )
2/a1 − 4(b1 − k2

1/4a1)
}√

1 +
(b1−k2

1/4a1)

a1

2
{
1 +

(b1−k2
1/4a1)

a1
− (x1

i )2

4a2
1

} . (7)
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Thus, for negative integral values of i, with

ξ−i =
x1
−i

2a1
+

√

1 +
(b1 − k2

1/4a1)

a1
,

we have

ξ−i = − 1

−℘− 1
−℘− 1

...

− 1
−℘+ξ0+

,

where

ξ0− =
x1

0

2a1
+

√

1 +
(b1 − k2

1/4a1)

a1
.

Therefore it is possible to give nonrecursive formulae for calculating x1
i and x1

−i. In the

following, here we shall consider only x1
i for positive integer indices because, as far as x1

−i is

concerned, it is enough to change, in all the formulae involved, ℘ into −℘, x1
i into x1

i−1. Starting

from (5), and by considering its particular structure, one can write, for i = 1, 2, 3, ...

ξi = −µi−1(℘)

µi(℘)
,

where µi(℘) are polynomials with integer coefficients. Here are the first five of them.

µ0(℘) 1

µ1(℘) ℘+ ξ0+

µ2(℘) (℘2 − 1) + ℘ξ0+

µ3(℘) (℘3 − 2℘) + (℘2 − 1)ξ0+

µ4(℘) (℘4 − 3℘2 + 1) + (℘3 − 2℘)ξ0+

µ5(℘) (℘5 − 4℘3 + 3℘) + (℘4 − 3℘2 + 1)ξ0+

According to a fundamental property of continued fraction [1], these polynomials satisfy

the second order linear recurrence

µi(℘) = ℘µi−1(℘) − µi−2(℘). (8)

We can further write

µi(℘) = ϕi(℘) + ϕi−1(℘)ξ0+, (9)

for a sequence of simpler polynomials ϕi(℘), each either odd or even. In fact, from (8) and (9),

we have

ϕi+2(℘) = ℘ϕi+1(℘) − ϕi(℘).
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Explicitly,

ϕi(℘) =






1, i = 0

∑ 1
2
n=0(−1)

1
2 +n




1
2 + n

2n



℘2n, i = 2, 4, 6, ...

∑ i+1
2

n=1(−1)
i+1
2 +n




i−1
2 + n

2n− 1


℘2n−1, i = 1, 3, 5, ...






From (6), we have

x1
i = a1(℘− 2

µi−1(℘)

µi(℘)
), (10)

for i = 1, 2, ....

Note 3.1 One can also consider the planes parallel to Y 1Z1 plane and Z1X1 plane.
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Abstract: A labeling or numbering of a graph G is an assignment of labels to the vertices

of G that induces for each edge uv a labeling depending on the vertex labels f(u) and f(v).

In this paper, we investigate neighborhood prime labeling of graph obtained by identifying

any two vertices of path Pn. We also discuss neighborhood prime labeling in some graph

operations on the cycle Cn.
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§1. Introduction

All graphs in this paper are finite, simple, undirected and having no isolated vertices. For

all terminology and notations in graph theory, we follow [2] and for all terminology regarding

graceful labeling,we follow [3]. The field of graph theory plays vital role in various fields.Graph

labeling is one of the important area in graph theory. Graph labelings where the vertices are as-

signed values subject to certain conditions have been motivated by practical problems.Labeled

graphs serves as useful mathematical models for a broad range of applications such as com-

munication network addressing system,data base management, circuit designs, coding theory,

X-ray crystallography, the design of good radar type codes, synch-set codes,missile guidance

codes and radio astronomy problems etc. The detailed description of the applications of graph

labelings can be seen in [1].

Definition 1.1 Let G = (V(G),E(G)) be a graph with p vertices. A bijection f: V(G) →
{1, 2, 3, · · · , p} is called prime labeling if for each edge e = uv, gcd(f(u), f(v)) = 1. A graph

which admits prime labeling is called a prime graph.

The notion of prime labeling was introduced by Roger Entringer and was discussed in a

paper by [4]. In [5] the author proved that the path Pn on n vertices is a prime graph. In [6]

the author proved that the graph obtained by identifying any two vertices of path Pn is a prime

graph. The prime labeling of some cycle related graphs were discussed in [7]. In [9] it is shown

that CnXP2;CnUK1,m, CnUPm,K1,nUPn,Olive trees, Pn ⊚K1, n ≥ 2, P1

⋃
P2

⋃ · · ·⋃Pn have

a prime labeling.

1Received January 14, 2016, Accepted November 28, 2016.
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§2. Neighborhood Prime Labeling

Definition 2.1 ([8]) Let G = (V (G), E(G)) be a graph with p vertices. A bijection f : V (G) →
{1, 2, 3, · · · , p} is called neighborhood prime labeling if for each vertex v ∈ V (G) with deg(v) > 1,

gcd{f(u) : u ∈ N(v)} = 1. A graph which admits neighborhood prime labeling is called a

neighborhood prime graph.

For a vertex v ∈ V (G), the neighborhood of v is the set of all vertices in G which are

adjacent to v and is denoted by N(v). If in a graph G, every vertex is of degree at most 1,

then such a graph is neighborhood prime. S.K.Pater,N.P.Shrimali [8] proved that the path Pn

is neighborhood prime graph for every n. They also proved that the cycle Cn is neighborhood

prime if n ≇ 2(mod4).We consider some results on neighborhood prime labeling of path Pn and

cycle Cn.

Definition 2.2 Let u and v be two distinct vertices of a graph G. A new graph Gu,v is con-

structed by identifying (fusing) two vertices u and v by a single new vertex x such that every

edge which was incident with either u or v in G is now incident with x in Gu,v.

Definition 2.3 A vertex switching Gv of a graph G is obtained by taking a vertex v of

G,removing all the edges incident with v and adding edges joining v to every vertex which

are not adjacent to G.

Definition 2.4 Let G1, G2, · · · , Gn, n ≥ 2 be n copies of a fixed graph G. The graph obtained

by adding an edge between Gi and Gi+1 for i = 1, 2, · · · , n− 1 is called the path union of G.

Theorem 2.1 The graph obtained by identifying any two vertices of Pn is a neighborhood prime

graph if n ≇ 3(mod4).

Proof Let v1, v2, · · · , vn be the vertices of Pn. Let u be the new vertex of the graph

G obtained by identifying two distinct vertices v1 and v2 of Pn. Then G is a loop with a

path in n-1 vertices.Since the path Pn is neighborhood prime for every n, G is neighborhood

prime. Let u be the new vertex of G obtained by identifying two distinct vertices va and vb

of Pn. Then G is a cycle (possibly loop) with at most two paths attached at u. The graph

G is the disjoint union of cycle C′
n and the path P ′

n.Consider the consecutive vertices of C′
n

are u = u1, u2, · · · , ur and the consecutive vertices of P ′
n are v0 = u, v1, v2, · · · , vs. Define a

function f : V (G) → {1, 2, 3, · · · , n− 1} as follows.

Case 1. If r and s are both even, define

f(u2i−1) =
n− 1

2
+ i, 1 ≤ i ≤ r

2
, f(u2i) = i, 1 ≤ i ≤ r

2
,

f(v2j−1) =
n+ r − 1

2
+ j, 1 ≤ j ≤ s

2
, f(v2j) =

r

2
+ j, 1 ≤ j ≤ s

2
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Case 2. If r is even but s is odd, define

f(u2i−1) =
n− 2

2
+ i, 1 ≤ i ≤ r

2
, f(u2i) = i, 1 ≤ i ≤ r

2
,

f(v2j−1) =
n+ r

2
+ j, 1 ≤ j ≤ s+ 1

2
, f(v2j) =

r

2
+ j, 1 ≤ j ≤ s− 1

2
.

Case 3. If r is odd but s is even, define

f(u2i−1) =
n− 2

2
+ i, 1 ≤ i ≤ r + 1

2
, f(u2i) = i, 1 ≤ i ≤ r − 1

2
,

f(v2j−1) =
n+ r − 1

2
+ j, 1 ≤ j ≤ s

2
, f(v2j) =

r − 1

2
+ j, 1 ≤ j ≤ s

2
.

Case 4. If r and s are both odd, define

f(u2i−1) =
n− 1

2
+ i, 1 ≤ i ≤ r + 1

2
, f(u2i) = i, 1 ≤ i ≤ r − 1

2
,

f(v2j−1) =
r − 1

2
+ j, 1 ≤ j ≤ s+ 1

2
, f(v2j) =

n+ r

2
+ j, 1 ≤ j ≤ s− 1

2
.

Clearly, f is an injective map. We claim f is neighborhood prime labeling due to the

following:

(1) If vj is a vertex of P
′

n and 1 ≤ j ≤ s− 1, the proof is divided into cases following:

Case 1. If r and s are both even, the neighborhood vertices of each vertex vj are either

(n−1+r
2 + j, n−1+r

2 + j + 1) or ( r
2 + j, r

2 + j + 1). These are consecutive integers. So the gcd of

the neighborhood vertices of vj is 1.

Case 2. If r is even but s is odd, the neighborhood vertices of each vertex vj are either

(n+r
2 + j, n+r

2 + j + 1) or ( r
2 + j, r

2 + j + 1). These are consecutive integers. So the gcd of the

neighborhood vertices of vj is 1.

Case 3. If r is odd but s is even, the neighborhood vertices of each vertex vj are either

(n−1+r
2 + j, n−1+r

2 + j+1) or ( r−1
2 + j, r−1

2 + j+1). These are consecutive integers. So the gcd

of the neighborhood vertices of vj is 1.

Case 4. If r and s are both odd the neighborhood vertices of each vertex vj are either

(n+r
2 + j, n+r

2 + j + 1) or ( r−1
2 + j, r−1

2 + j + 1). These are consecutive integers. So the gcd of

the neighborhood vertices of vj is 1.

(2) If ui is a vertex of C
′

n, 2 ≤ i ≤ r, the proof is divided into cases following:

Case 1. If r and s are both even, the neighborhood vertices of each vertex ui are either

(n−1
2 +i, n−1

2 +i+1) or (i, i+1). These are consecutive integers. So the gcd of the neighborhood

vertices of ui is 1.

Case 2. If r is even but s is odd, the neighborhood vertices of each vertex ui are either

(n−2
2 +i, n−2

2 +i+1) or (i, i+1). These are consecutive integers. So the gcd of the neighborhood

vertices of ui is 1.
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Case 3. If r is odd but s is even, the neighborhood vertices of each vertex ui are either

(n−2
2 +i, n−2

2 +i+1) or (i, i+1). These are consecutive integers. So the gcd of the neighborhood

vertices of ui is 1.

Case 4. If r and s are both odd, the neighborhood vertices of each vertex ui are either

(n−1
2 +i, n−1

2 +i+1) or (i, i+1). These are consecutive integers. So the gcd of the neighborhood

vertices of ui is 1.

(3) For the vertex u = u1 in C
′

n, the labeling of one of the neighborhood vertex is one. So

the gcd is one.

Finally if we identifying the vertices v1 and vn of the path Pn, then the graph G is a cycle

with n− 1 vertices. The cycle Cn is neighborhood prime for n ≇ 2(mod4), G is neighborhood

prime if n ≇ 3(mod4). 2
§3. Neighborhood Prime Labeling on Cycle Related Graphs

In this section we consider neighborhood prime labeling on cycle with chords,cycle with switch-

ing a vertex,path union of cycles and join of two cycles with a path. In [10] Mathew Varkey

T.K and Sunoj B.S proved that, every cycle Cn with a chord is prime for n > 4 and every cycle

Cn with [n−1
2 ] − 1 chords from a vertex is prime for n > 5. We have the following theorems.

Theorem 3.1 Every cycle Cn with a chord is neighborhood prime for all n ≥ 4.

Proof Let G be a graph such that G = Cn with a chord joining two non-adjacent vertices

of Cn,for all n ≥ 4. Let {v1, v2, · · · , vn} be the vertex set of G. Let the number of vertices of

G be n and number of edges of G be n+ 1.

(1) If n ≇ 2(mod4), define a function f : V (G) → {1, 2, · · · , n} as follows:

Case 1. If n is odd, let

f(v2j−1) =
n− 1

2
+ j, 1 ≤ j ≤ n+ 1

2
and f(v2j) = j, 1 ≤ j ≤ n− 1

2
.

Case 2. If n is even, let

f(v2j−1) =
n

2
+ j, 1 ≤ j ≤ n

2
and f(v2j) = j, 1 ≤ j ≤ n

2
.

The neighborhood vertices of each vertex vi except vn is {vi−1, vi+1} and they are consec-

utive integers, so it is neighborhood prime. The neighborhood vertices of vn is {vn−1, v1} and

the corresponding labels are consecutive integers n−1
2 and n+1

2 if n is odd, n and n
2 + 1 if n is

even.Now select the vertex vi and join this to any vertex of G which is not adjacent to vi. Then

it is clear that the gcd of labeling of the neighborhood vertices of each vertex is one and G is

neighborhood prime graph.

(2) If n ∼= 2(mod4), the labeling of the same function shows that there exists at least one

vertex whose neighborhood set is not prime.Let vi be the vertex whose neighborhood set is not
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prime. We choose the vertex vj which is not adjacent and relatively prime to vi in G and join

with a chord. Then G is a neighborhood prime graph. 2
Theorem 3.2 Every cycle Cn with n−3 chords from a vertex is neighborhood prime for n ≥ 5.

Proof Let G be a graph such that G = Cn, n ≥ 5. Let {v1, v2, · · · , vn} be the vertex set

of G.Choose an arbitrary vertex vi and joining vi to all the vertices which are not adjacent to

vi. Then there are n-3 chords to vi and from the above theorem G admits neighborhood prime

labeling. 2
Theorem 3.3 The graph obtained by switching of any vertex in a cycle Cn is neighborhood

prime graph.

Proof Let G = Cn and v1, v2, · · · , vn be the successive vertices of Cn.Let Gvk
denotes the

vertex switching of G with respect to the vertex vk. Here |V (Gvk
)| = n and |E(Gvk

)| = 2n− 5.

Define a labeling f : V (G) → {1, 2, 3, · · · , n} as follows:

f(vk) = 1,

f(vi) = i+ 1, 1 ≤ i ≤ k − 1,

f(vk+i) = f(vk−1) + i, 1 ≤ i ≤ n− k.

Then for any vertex vi other than vk, the neighborhood vertices containing vk and so the gcd

of the label of vertices in N(vi) is 1. Gvk
is a neighborhood prime graph. 2

Theorem 3.4 Let G be the graph obtained by the path union of finite number of copies of cycle

Cn. G is a neighborhood prime graph if n ≇ 2(mod4).

Proof Let G be the path union of cycle Cn and G1, G2, · · · , Gk be k copies of cycle

Cn. The vertices of G is nk and edges of G is (n + 1)k. Let us denote the vertices of G be

vij , 1 ≤ i ≤ n, 1 ≤, j ≤ k and the successive vertices of the graph Gr by v1r, v2r, · · · , vnr. Let

e = v1rv1(r+1) be the edge joining Gr and G(r+1) for r = 1, 2, · · · , k − 1.

Define the labeling f : V (G) → {1, 2, · · · , nk} as follows:

Case 1. If n is odd and 1 ≤ j ≤ k, define

f(v(2i−1)j) = nj + i− n+ 1

2
, 1 ≤ i ≤ n+ 1

2
and f(v(2i)j) = n(j − 1) + i, 1 ≤ i ≤ n− 1

2
.

Case 2. If n is even and 1 ≤ j ≤ k, define

f(v(2i−1)j) = nj + i− n

2
, 1 ≤ i ≤ n

2
and f(v(2i)j) = n(j − 1) + i, 1 ≤ i ≤ n

2
.

We claim that f is a neighborhood prime labeling. If vir is any vertex of G in the rth

copy of the cycle Cn different from v1r, then N(vir) = {v(i−1)r; v(i+1)r}. Since f(v(i−1)r) and

f(v(i+1)r) are consecutive integers, gcd of the labels of the vertices in N(vir) is 1.

Notice that N(v11) = {vn1; v21} and f(v21) = 1, the gcd of the labels of vertices in N(v11)

is 1. Now we consider vertices v1r, 1 ≤ r ≤ k.
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Case 1. If n is odd, the labels of vertices in N(v1r) are n(r− 3
2 )+ 1

2 , n(r+ 1
2 )+ 1

2 , n(r−1)+1

and nr. They are relatively prime.

Case 2. If n is even, the labels of vertices in N(v1r) are n(r− 3
2 )+ 1

2 , n(r+ 1
2 )+ 1

2 , n(r−1)+2

and n(r − 1
2 ). They are relatively prime.

Finally we consider v1k.

Case 1. If n is odd, the labels of vertices in N(v1k) are n(k − 3
2 ) + 1

2 , n(k − 1) + 1 and nk.

They are relatively prime.

Case 2. If n is odd, the labels of vertices in N(v1k) are n(k− 3
2 )+ 1

2 , n(k−1)+1 and n(k− 1
2 ).

They are relatively prime.

The cycle Cn is not neighborhood prime if n ∼= 2(mod4). Thus G is not neighborhood

prime if n ∼= 2(mod4). Hence G is neighborhood prime if n ≇ 2(mod4). 2
Theorem 3.5 The graph obtained by by joining two copies of cycle Cn by a path Pk is a

neighborhood prime graph if n ≇ 2(mod4).

Proof Let G be the graph obtained by joining two copies of cycle Cn by a path Pk. The

vertices of G are 2n+ k − 2 and edges of G are 2n+ k − 1. Let v1, v2, · · · , vn be the vertices

of the first copy of cycle Cn and w1, w2, · · · , wn be the vertices of the second copy of cycle Cn.

Let u1, u2, · · · , uk be the vertices of path Pk with v1 = u1 and w1 = uk.

Define the labeling f : V (G) → {1, 2, 3, · · · , 2n+ k − 2} as follows:

Case 1. If n is odd, let the labeling on Cn be

f(v2i−1) =
n− 1

2
+ i, 1 ≤ i ≤ n+ 1

2
, f(v2i) = i, 1 ≤ i ≤ n− 1

2

and

f(w2i−1) =
3n− 1

2
+ i, 1 ≤ i ≤ n+ 1

2
, f(w2i) = n+ i, 1 ≤ i ≤ n− 1

2
.

Case 2. If n is even, let the labeling on Cn be

f(v2i−1) =
n

2
+ i, 1 ≤ i ≤ n

2
, f(v2i) = i, 1 ≤ i ≤ n

2

and

f(w2i−1) =
3n

2
+ i, 1 ≤ i ≤ n

2
, f(w2i) = n+ i, 1 ≤ i ≤ n

2
.

The labeling on Pk is defined by

Case 1. If k is odd, let

f(u2i) = 2n+
k − 3

2
+ i, 1 ≤ i ≤ k − 1

2
and f(u2i+1) = 2n+ i, 1 ≤ i ≤ k − 3

2
.

Case 2. If k is even, let

f(u2i) = 2n+
k − 2

2
+ i, 1 ≤ i ≤ k − 2

2
and f(u2i+1) = 2n+ i, 1 ≤ i ≤ k − 2

2
.
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We claim that f is a neighborhood prime labeling. If vi is any vertex of G in the first

copy of the cycle Cn different from v1, then N(vi) = [vi−1, vi+1]. Since f(vi−1) and f(vi+1) are

consecutive integers, the gcd of the label of the vertices is 1. Also N(v1) contains the vertex v2

and f(v2) = 1, the gcd of the label of vertices in N(v1) is 1.

If wi is any vertex of G in the second copy of the cycle Cn different from w1, then N(wi) =

[wi−1, wi+1]. Since f(wi−1) and f(wi+1) are consecutive integers, the gcd of the label of the

vertices is 1.

Now, consider w1.

Case 1. If n is odd, N(w1) are {w2, wn, uk−1}. They are relatively prime for n ≥ 1 since

f(w2) = n+ 1, f(wn) = 2n.

Case 2. If n is even, N(w1) are {w2, wn, uk−1}. They are relatively prime for n ≥ 2 since

f(v2) = n+ 1, f(vn) = 3n
2 .

Finally, if ui is any vertex of G in the path Pk different from ui and uk,then N(ui) =

{ui−1, ui+1}. Since f(ui−1) and f(ui+1) are consecutive integers, the gcd of the label of vertices

of N(ui) is 1. Thus, G is a neighborhood prime labeling graph if n ≇ 2(mod4). 2
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We know nothing of what will happen in future, but by the analogy of past

experience.

By Abraham Lincoln, an American President.
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