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The tragedy of the world is that those who are imaginative have but slight
experience, and those who are experienced have feeble imaginations.

By Alfred North Whitehead, a British philosopher and mathematician.
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Abstract: A regular curve in complex space, whose position vector is composed by Cartan
frame vectors on another regular curve, is called a isotropic Smarandache curve. In this
paper, I examine isotropic Smarandache curve according to Cartan frame in Complex 3-
space and give some differential geometric properties of Smarandache curves. We define
type-1 ejes-isotropic Smarandache curves, type-2 ejes-isotropic Smarandache curves and

e1ezes-isotropic Smarandache curves in Complex space C3.
Key Words: Complex space C3, isotropic Smarandache curves, isotropic cubic.

AMS(2010): 53A05, 53B25, 53B30.

81. Introduction

It is observe that the imaginary curve in complex space were pioneered by E. Cartan. Cartan
defined his moving frame and his special equations in C®. In [6], the Cartan equations of
isotropic curve is extended to space C*. Moreover U. Pekmen [2] wrote some characterizations
of minimal curves by means of E. Cartan equations in C3.

A regular curve in Euclidean 3-space, whose position vector is composed by Frenet frame
vectors on another regular curve, is called Smarandache curve. M. Turgut and S. Yilmaz have
defined a special case of such curves and call it Smarandache T Bz curves in the space E{ [7].
A.T. Ali has introduced some special Smarandache curves in the Euclidean space [9]. Moreover,
special Smarandache curves have been investigated by using Bishop frame in Euclidean space
[10]. Special Smarandache curves according to Sabban frame have been studied by [11]. Besides
some special Smarandache curves have been obtained in E? by [12]. Apart from M. Turgut
defined Smarandache breadth curves [8].

It is given that complex elements and complex curves to real space R? which are mentioned
by Ferruh Semin, see [1]. In complex space C® helices are characterized in [5]. In complex space
C*, S. Yilmaz characterized the isotropic curves with constant pseudo curvature which is called
the slant isotropic helix. Yilmaz and Turgut give some characterization of isotropic helices in
C3 [3].

Several authors introduce different types of helices and investigated their properties. For

instance, Barros et. al. studied general helices in 3- dimensional Lorentzian space. Izumiya and

1Received January 6, 2016, Accepted November 2, 2016.
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Takeuchi defined slant helices by the property that principal normal mekes a constant angle
with a fixed direction [14]. Kula and Yayli studied spherical images of tangent and binormal
indicatrices of slant helices and they have shown that spherical images are spherical helix [15].

Ali and Lopez gave some characterization of slant helices in Minkowski 3-space E} [13].

In this work, using not common vector field know as Cartan frame, I introduce a new
Smarandache curves in C3. Also, Cartan apparatus of Smarandache curves have been formed

by Cartan apparatus of given curve oo = a(s).

82. Preliminaries

Let z, be a complex analytic function of a complex variable ¢. Then the vector function
4 —
T() =) zp(t) Ky,
p=1

-
is called an imaginary curve, where 7 : C — C*, k, are standard basis unit vectors of E3 [6].

An isotropic curve z = z(s) in C? is called an isotropic cubic if pseudo curvature of x(s)

is congruent to zero. A direction (b1, ba, b3) is a minimal direction if and only if

A vector which has a minimal direction is called an isotropic vector or minimal vector. A
vector 9 is a minimal vector if and only if 92 = 0. Common points of a complex plane and
absolute are called siklik points of the plane. A plane which is tangent to the absolute is called
a minimal plane, see [6]. The curves, of which the square of the distance between the two points
equal to zero, are called minimal or isotropic curves [3]. Let s denote pseudo arc-length A curve

is an minimal (isotropic) curve if and only if ([4,5])

[Z'(6)]* =0 (2.2)
where % =T'(t) # 0. Let be each point Z of the isotropic curve. E. Cartan frame is
defined (for well-known complex number ;2 = —1) as follows, (see [1,4])

— —,

e =T

o =iT" (2.3)
?3 _ _%?\ + E’lll

where 8 = (7'"")2, equation (2.3) denote by { €1, €2, €3} the moving E. Cartan frame along

the isotropic curve Z in the space C°.
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The inner products of these frame vectors are given by

0if i+5=1,2,3, od4
i e = sy (modd) (2.4)

1if i+j=4

The cross (vectoral) and fixed products of these frame vectors are given by

— — —
ej/\ek:zejurk,z (25)
<?1,?2/\?3 >=1
¢ 1
for j,k = 1,2,3, s = [ —[@'(t)]7dt is a pseudo arc length, also invariant with respect to

to
parameter ¢. Thus the vector €'y and €3 are isotropic vector, ¢€’o is real vector E. Cartan

derivative formulas can be deduced from equation (2.3) as follows

— —
€, =1€>
ey =ikes

where k = g is called pseudo curvature of isotropic curve = x(s). These equations can be

used if the minimal curve is at least of class C*. Here (1) denotes derivative according to pseudo
arc length s. In the rest of the paper, we will suppose pseudo curvature is non-vanishing expect
in the case of an isotropic cubic. Isotropic sphere with center 7 and radius r» > 0 in C? is
defined by

82 = {? = (p17p27p3) S 03 : (? - m)2 = O} .

83. Type-1 efe§—Isotropic Smarandache Curves

Definition 3.1 Let o = «(s) be a unit speed reqular isotropic curve in C? and {e¢,eS, e} be

its moving Cartan frame. Type-1 ee§ -isotropic Smarandache curves can be defined by

9(s") = %(e‘f‘ +ed). (3.1)

Now, we can investigate Cartan invariants of e{*e§-isotropic Smarandache curves according

to o = a(s). Differentiating equation (3.1) with respect to pseudo arc length s, we obtain

_ wdst i
Cdstds /2

(14 k%)eg (3.2)

where st (14 k®)i
S i

—_— = 3.3

ds V2 (3:3)
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The tangent isotropic vector of curve ¢ can be expressed as follow
eV = -1+ k@es (3.4)

Differentiating equation (3.4) with respect to pseudo arc length s, we obtain

d *
()’ ;S =201 + k¥)ie® + (k%) €S + 2(1 + k%)ieg. (3.5)

Substituting equation (3.3) into equation (3.5), we find

(V) = (2\@/&”) e — (7?4?]2?'2) s +2v/2¢5.

Since (6119)' = —ieY, the principal vector field of curve 9

ey = (2\/§ka) e — (%) iey + 2v/2¢5. (3.6)

Using Cartan equation (2.6)3, we have

o)l
ey =i / K’ l?\/ﬁkae‘f‘ + Meg + 2\/5@'6?] ds (3.7)

1+ ke
and
9 |
e
kY = _{ fg) i (3.8)
€2
Substituting equations (3.6) and (3.7) into equation (3.8), we obtain
|
2 (k)
{i/k” l2\/§ e + %e% +2\/§ie§‘] ds}
kY = NCTTST i (3.9)
2v2keeq + P oo 1 24/2ieg
Proposition 3.1 If VY a isotropic Smarandache curves in C3, then k* = —1.

Proof Using equation (3.4) and definition isotropic curves, it is seen straightforwardly. O

Proposition 3.2 Let a = a(s) be a unit speed reqular isotropic curve in C3, If & a isotropic
cubic in C3, then pseudo curvature of o satisfies ey =constant and €3 # 0.

Proof 1t is seen straightforwardly from definition isotrobic cubic. a

84. Type-2 efe§—Isotropic Smarandache Curves

Definition 4.1 Let o = «(s) be a unit speed reqular isotropic curve in C? and {e¢,eS, e} be
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its moving Cartan frame. Type-2 efe§-isotropic Smarandache curves can be defined by

i

5(s%) = e — ef).

(4.1)

Now, we can investigate Cartan invariants of type-2 efe§-isotropic Smarandache curves

according to o = a(s). Differentiating equation (4.1) with respect to pseudo arc length s, we

obtain &5 ds* )
| S « «

and ds* .

5 as e e

e =——(k%—=1)e

1 d \/5( ) 2
where

ds* ke —1

Pl (4.3)

The tangent isotropic vector of curve § can be expressed as follow
e = —VE* —1eg (4.4)

Differentiating equation (4.4) with respect to pseudo arc length s, we obtain

/ a o i (ka)l « /1.0 «
— ka — 1I€ 61 — WGQ =+ k — 163 . (45)
Using definition, binormal vector field and pseudo curvature of isotropic Smarandache

curve § are respectively,

oo i (k) o Te
/k‘;[\/ 1k%e —2\/k—62+\/k 13] (4.6)

and

TN W == B
ké_{ /kél k kel 2 —k 2+ k 13‘| } (47)
\/—ko‘el—2 —:Q)l 2+\/—1€ ' '

Proposition 4.1 If § a isotropic Smarandache curves in C3, then k* =1

Proof Using equation (4.4) and definition isotropic curves, it is seen straightforwardly. O

Proposition 4.2 Let a = a(s) be a unit speed regular isotropic curve in C3, If § a isotropic

cubic in C®, then pseudo curvature of o satisfies €} =constant and €3 # 0.

Proof 1Tt is seen straightforwardly from definition isotrobic cubic. a
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85. ef'eSeq—Isotropic Smarandache Curves

Definition 5.1 Let a = a(s) be a unit speed regular isotropic curve in C3 and {e$,eS, e} be
its moving Cartan frame. Type-1 efe§-isotropic Smarandache curves can be defined by

* _i ea ea ea
n(s*) = \/5( 1 tey+ 3)- (5.1)

Now, we can investigate Cartan invariants of e{efe§-isotropic Smarandache curves ac-

cording to a = a(s). Differentiating equation (5.1) with respect to pseudo arc length s, we

have dn ds* )
= ds s 7 [ik“ey — (k™ + 1)eS + ieS] (5.2)
and is* .
| S s L. O - (o3 [e3 > QO
n = 6717d—$ =7 [ik“ef — (k™ + 1)e3 + ieg]
where
ds* 1+ ke
= — (5.3)
ds V3
The tangent isotropic vector of curve 7 can be written as follow:
n 1 S RPN e Re [e% -«
e] = ———=[ik%] — i(k* + 1)e§ + ieg] (5.4)

V1+ ke

Differentiating equation (5.4) with respect to pseudo arc length s, we obtain

el = {(1;ﬁ)[i(ka)'+(ka+1)k]—(;j,ﬁ)ika}e?
_ (1+¢,§a)[—2ka+(ka+1)']—(l+ﬁ)(ka+1)}eg
- (1+ﬁ)l+(1fgﬂ)}eg

Using definition, binormal vector field and pseudo curvature of isotropic Smarandache

curve 7 are respectively

el = —i/k"{ <1_—l-\/k§°‘> (k%) + (K* + 1)k%] — <1__i_\/k§a>lik°‘ es
— (2 pre e+ 1)) - (BE) e+ 1)} eg
- (14{2@) + (14{2@)}‘3?}@

Let ed = H(s) and e = G(s) n this case, we have
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Proposition 5.1 Ifn a isotropic Smarandache curves in C3, then k& # —1.

Proof Using equation (5.4) and definition isotropic curves, it is seen straightforwardly. O

Proposition 5.2 Let a = a(s) be a unit speed reqular isotropic curve in C3, If n a isotropic

cubic in C3, then pseudo curvature of a satisfies el =constant and e] # 0.

Proof 1t is seen straightforwardly from definition isotrobic cubic. a
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Abstract: In this paper, 2-pseudo neighbourly irregular intuitionistic fuzzy graph, 2-
pseudo neighbourly totally irregular intuitionistic fuzzy graph are introduced and compared
through various examples. A necessary and sufficient condition under which they are equiv-
alent is provided. 2- pseudo neighbourly irregularity on some intuitionistic fuzzy graphs
whose underlying crisp graphs are a cycle Cp, a Bi-star graph By, m, Sub(Bn,m ), and a path
P, are studied.

Key Words: Degree of a vertex in an intuitionistic fuzzy graph, dz-degree of a vertex in an
intuitionistic fuzzy graph, total d2-degree, pseudo degree, pseudo total degree,neighbourly

irregular intuitionistic fuzzy graph.
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81. Introduction

The first definition of fuzzy graph was introduced by Kaufmann [9] in 1975, based on Zadeh’s
fuzzy relations in 1965 ([17]). Atanassov [4] introduced the concept of intuitionistic fuzzy
(IF) relations and Intuitionistic Fuzzy Graphs (IFGs). Parvathi and Karunambigai [12] intro-
duced the concept of IFG elaborately and analyzed its components. S. Ravi Narayanan and
S. Murugesan [13] introduced Pseudo Regular Intuitionistic Fuzzy Graphs. A. Nagoor Gani,
R. Jahir Hussain and S. Yahya Mohamed [11] introduced Neighbourly Irregular Intuitionistic
Fuzzy Graphs. Articles [4, 11, 12, 13] motivated us to introduce 2- pseudo neighbourly irregular
intuitionistic fuzzy graph, 2- pseudo neighbourly totally irregular intuitionistic fuzzy graph and
analyze some of its properties.

In Section 2, we review some basic concepts and definitions. Section 3 deals with 2-pseudo
neighbourly irregular intuitionistic fuzzy graphs and 2-pseudo neighbourly totally irregular in-
tuitionistic fuzzy graphs. Comparative study between them is made and necessary and sufficient

condition is provided. Section 4 deals with 2-pseudo neighbourly irregularity on cycle with some

1Received May 26, 2016, Accepted November 4, 2016.
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specific membership function. Section 5 deals with 2-pseudo neighbourly irregularity on bi-star
graph B,, ,, with some specific membership function. Section 6 deals with 2-pseudo neighbourly
irregularity on subdivision of bi-star graph with some specific membership function. Section 7
deals with 2-pseudo neighbourly irregularity on a path with some specific membership function.

Throughout this paper, the vertices takes the membership value A = (u1,71) and the edges
takes the membership values B = (u2,v2).

82. Preliminaries

We present some known definitions related to fuzzy graphs and intuitionistic fuzzy graphs for

ready reference to go through the work presented in this paper.

Definition 2.1([6]) A fuzzy graph G : (o, 1) is a pair of functions (o, u), where o :' V. —[0,1]
is a fuzzy subset of a non empty set Vand u:V XV —[0, 1] is a symmetric fuzzy relation on
o such that for all u,v in V', the relation p(u,v) < o(u) A o(v) is satisfied. A fuzzy graph G is
called complete fuzzy graph if the relation p(u,v) = o(u) A o(v) is satisfied.

Definition 2.2([3]) An intuitionistic fuzzy graph with underlying set V is defined to be a pair
G = (V, E) where

(1) V. = {v1,v9,v3, -+ ,un} such that p; : V. — [0,1] and 1 : V — [0,1] denote the
degree of membership and non-membership of the element v; € V, 1 = 1,2,3,--- ,n, such that
0 < pa(vi) +7(vi) <1;

(2) ECV XV, where pio : VxV —[0,1] and y2 : VXV — [0, 1] are such that po(vi, vj) <
min{u (v;), p1(v)} and v2(vi,v;) < max{y1(v;), 7 (v;)} and 0 < pa(vi, vj) + v2(vi,v5) <1 for
every (vi,v;) € E, 4,5 =1,2,--- ,n.

Definition 2.3([8]) If v;,v; € V C G, the p-strength of connectedness between two vertices v;
and v; is defined as p3°(vi,v;) = sup{pb(vi,vj) 1 k=1,2,---,n} and y-strength of connected-
ness between two vertices v; and v; is defined as v (vi,v;) = inf{v5(vi,vj) 1 k=1,2,--- ,n}.

If w and v are connected by means of paths of length k then pk(u,v) is defined as sup
{pa(u,v1) A po(v1,v2) Av - A pa(vk—1,0): (u, 01,02, ,vk—1,v) € V} and v5 (u,v) is defined as
inf{lya(u,v1) Aya(vy,v2) A Aya(vg—1,v) : (u,v1,va,- - ,05—1,v) € V}.

Definition 2.4([8]) Let G : (A, B) be an intuitionistic fuzzy graph on G*(V,E). Then the
degree of a vertex v; € G is defined by d(v;) = (dy, (vi),dy, (vi)), where d,,, (v;) = Y pa(vi, vj)
and d, (v;) =Y 72 (vi,v5), for (vi,v;) € E and pa(vi,v;) = 0 and y2(v;, vj) = 0 for (v;,v;) ¢ E.

Definition 2.5([8]) Let G : (A, B) be an intuitionistic fuzzy graph on G*(V,E). Then the
total degree of a vertex v; € G is defined by td(v;) = (td,, (vi),td, (v;)), where td,, (v;) =
dp (i) + pa (0i) and tdy, (v;) = dyr(vi) + 71 (vi)-

Definition 2.6([13]) Let G : (A, B) be an intuitionistic fuzzy graph. The membership pseudo
degree of a vertex u € G is defined as dqyp1(u) = Z—”i where t,, is the sum of membership degrees

of wvertices incident with vertex uw. The non-membership pseudo degree of a vertex uw € G is
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defined as d(q)yi(u) = Z—: where 1., is the sum of non-membership degrees of vertices incident
with vertex u and d; is the total number of edges incident with the vertex w. The pseudo degree
of a vertex v € G is defined as d(q)(u) = (d(qyp1(u), dyyi(u)).

Definition 2.7([13]) Let G : (4, B) be an intuitionistic fuzzy graph. The pseudo total degree of
a verter u € G is defined as td(q)(u) = (td(qyp1(u), tdgyy1(w)) where tdgypr(u) = dgypr(u) +
p1(w) and tdgyyi(uw) = digyvi(u) +yi(u). It can also be defined as tdq)(u) = dqy(u) + A(u).

Definition 2.8([13]) Let G : (A, B) be an intuitionistic fuzzy graph. The membership da -

pseudo degree of a vertex u € G is defined as dq)2yp1(u) = M. The non-membership

_ 2 deyy, (v)
= =71

da-pseudo degree of a verter u € G is defined as d(qy(2)v1(u) where d; is the

number of edges incident with the vertex w. The ds - pseudo degree of a vertex u is defined as

d(ay(2) (1) = (d(ay2) 1 (w), dia)2)71 ().

Definition 2.9([13]) Let G : (A, B) be an intuitionistic fuzzy graph. Then the da-pseudo
total degree of a verter uw € V is defined as td(,y2y(u) = (td(q)2)m1(u), tdq)@)v1(w)), where
td(a)(2) i1 (w) = d(a)(2) 11 () + pia () and
tday2)71(w) = diay2yy1(u) +71(u). Also it can be defined as td,)(2)(u) = diaye2)(u) + A(u)
where A(u) = (s (), 71 (1),

Definition 2.10([11]) Let G : (A, B) be an intuitionistic fuzzy graph. Then G is said to
be neighbourly irreqular intuitionistic fuzzy graph if every two adjacent vertices have distinct

degrees.

Definition 2.11([14]) Let G : (A, B) be an intuitionistic fuzzy graph. If dqy(v) = (r1,72) and
da)(2)(v) = (c1,¢2), then G is said to be ((r1,72),2, (c1,c2))- pseudo regular intuitionistic fuzzy
graph.

83. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graphs

In this section, 2-pseudo neighbourly irregular and 2-pseudo neighbourly totally irregular intu-
itionistic fuzzy graphs are defined. A necessary and sufficient condition under which they are

equivalent is provided.

Definition 3.1 Let G : (A, B) be a connected intuitionistic fuzzy graph. Then G is said to
be 2-pseudo neighbourly irreqular intuitionistic fuzzy graph if every two adjacent vertices of G

have distinct ds-pseudo degrees.

Example 3.2 Consider an intuitionistic fuzzy graph on G* : (V, E).



2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graphs 11

1(0.4,0.5)

2(0.4,0.6) w(0.4,0.6)
Figure 1

Here, d(a)(g) (u) = (0.3,0.55), d(a)(g)(’u) = (0.33,0.83), d(a)(g)(w) = (0.4,0.8), d(a)(g) (I) =
(0.35,0.75) and d(q)(2)(y) = (0.37,0.87).
So, every two adjacent vertices have distinct de-pseudo degrees. Hence G is 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

Definition 3.3 If every two adjacent vertices of an intuitionistic fuzzy graph G : (A, B) have
distinct da -pseudo total degrees, then G is said to be 2-pseudo neighbourly totally irreqular

intuitionistic fuzzy graph.

Example 3.4 Consider an intuitionistic fuzzy graph on G* : (V, E).

1(0.3,0.4) v(0.4,0.4) w(0.5,0.5)
0.2,0.3 0.3,0.4
(0.4,0.5)
@
2(0.4,0.6) 0.3,04) y(0.5,0.5) 0.2,0.3) x(0.3,0.5)
Figure 2

Here, td(a)(g) (u) = (08, 1.4),td(a)(2)(v) = (087, 1.13),td(a)(2)(w) = (1, 15), td(a)(g)(fb) =
(08, 15),td(a)(2) (y) = (097, 143) and td(a)(g) (Z) = (09, 16)
So, every two adjacent vertices have distinct de-pseudo total degrees. Hence G is 2-pseudo

neighbourly totally irregular intuitionistic fuzzy graph.

Remark 3.5 A 2-pseudo neighbourly irregular intuitionistic fuzzy graph need not be a 2-pseudo

neighbourly totally irregular intuitionistic fuzzy graph.

Remark 3.6 A 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph need not be a

2-pseudo neighbourly irregular intuitionistic fuzzy graph.
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Proposition 3.7 If the membership value of the adjacent vertices are distinct, then ((r1,72),2, (¢1,¢2))-

pseudo regqular intuitionistic fuzzy graph is 2-pseudo meighbourly totally irreqular intuitionistic

fuzzy graph.
Proof The proof is obvious. O

Theorem 3.8 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V,E). If G is a 2-
pseudo neighbourly irreqular intuitionistic fuzzy graph and A is a constant function, then G is

a 2-pseudo neighbourly totally irreqular intuitionistic fuzzy graph.

Proof Let G : (A, B) be a 2-pseudo neighbourly irregular intuitionistic fuzzy graph. Then
the da- pseudo degree of every two adjacent vertices are distinct. Let w and v be two adjacent
vertices with distinct dy -pseudo degrees. This implies that d(q)(2)(u) = (k1, k2) and d(q)(2)(v) =
(ks, ka), where ky # ks, ko # ky and A(u) = A(v) = (c1,¢2), a constant where ¢1,¢2 € [0,1].
Suppose td(a)(2)(u) = td(a)2)(v) = d(a)2)(u) + A(u) = d(a)(2)(v) + A(v) = (k1,k2) + (c1,2) =
(k3,ka) + (c1,c2) = (k1,k2) = (k3, ks), which is a contradiction. So, td,)2)(u) # td(a)2)(v).
Hence any two adjacent vertices v and v with distinct dao- pseudo degrees have their da- pseudo
total degrees distinct, provided A is a constant function. This is true for every pair of adjacent

vertices in G. Hence G is 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph. 0O

Theorem 3.9 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V, E). If G is a 2-pseudo
neighbourly totally irreqular intuitionistic fuzzy graph and A is a constant function, then G is

a 2-pseudo neighbourly irregular intuitionistic fuzzy graph.

Proof Let G : (A, B) be a 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.
Then the da-pseudo total degree of every two adjacent vertices are distinct. Let w and v be two
adjacent vertices with dy -pseudo degrees (K1, ko) and (ks3, ks4). Then d(4)2)(u) = (K1, k2) and
d(a)(2)(v) = (k3,ks). Given that A(u) = A(v) = (c1,c2), a constant where ci,c2 € [0,1] and
td(a)(2) (w) # td(ay(2)(v). Since, td(a)(2)(u) # tday2)(v) = day2)(u) + A(u) # da)2)(v) + A(v)
= (kl, k2) + (Cl, CQ) #+ (kg, k4) + (Cl, CQ) = (kl, kg) #+ (kg, k4) = d(a)(2) (u) #+ d(a)(2) (1)) Hence
any two adjacent vertices u and v with distinct da- pseudo total degrees have their do- pseudo
degrees distinct, provided A is a constant function. This is true for every pair of adjacent

vertices in GG. Hence G is 2-pseudo neighbourly irregular intuitionistic fuzzy graph. O

Remark 3.10 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V, E). Theorems
3.8 and 3.9 jointly yield the following result. If A is a constant function, then G is a 2-pseudo
neighbourly totally irregular intuitionistic fuzzy graph if and only if G is a 2-pseudo neighbourly

irregular intuitionistic fuzzy graph.

Remark 3.11 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V, E). If G is both 2-
pseudo neighbourly irregular intuitionistic fuzzy graph and G is a 2-pseudo neighbourly totally

irregular intuitionistic fuzzy graph. Then A need not be a constant function.

84. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on a Cycle with
Some Specific Membership Functions

In this section, Theorems 4.1 and 4.4 provide 2-pseudo neighbourly irregularity on intuitionistic
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fuzzy graph G : (4, B) on a cycle G* : (V, E).

Theorem 4.1 Let G : (A, B) be an intuitionistic fuzzy graph on a cycle G* : (V, E) of length n.
If the values of the edges ey, ea, €3, , e, are respectively (c1,k1), (c2,k2), (c3,k3), -+, (cn, kn)
such that ¢; < c;41 and ki > kiy1, fort1 =1,2,--- ,n—1, then G is a 2-pseudo neighbourly

wrreqular intuitionistic fuzzy graph.

Proof Let G : (A, B) be an intuitionistic fuzzy graph on a cycle G* : (V| E) of length n.
Let e1,e9,e3,--- , e, be the edges of the cycle of G* in that order. Let the values of the edges
€1,€2,€3, €, be (c1,k1), (ca, ko), (c3,k3), -+, (Cn, kn) such that ¢; < ¢;11 and k; > k;1q for
i=1,2,-- n—1

diyp1(v1) = {p2(e1) A pa(e2)} + {p2(en) A pa(en—1)}
={ciNea} +{en Aen—1}

=c1+Ccp_1.

diayp1(v2) = {p2(er) A pa(en)} + {n2(e2) A pa(es)}
={ci Nen} + {2 Aes}

=1 + Co.
Fori=3,4,5,--- ,n—1,

dioyp1(vi) = {p2(ei—1) A palei—2)} + {p2(eir1) A pales)}
{eici Neia} +{eiNcipa}

Ci—2 +¢;.

deayp1(vn) = {p2(e1) A pzlen)} + {p2(en—1) A pa(en—2)}
={ci Aept +{cn—1 A cn_2}

=c1+ Cp—2.

diy71(v1) = {12(e1) Vyale2)} + {r2(en) V y2(en-1)}
= {kl V kg} + {kn \ kn—l}
= kl + kn—l'

d2yri(v2) = {72(e1) Vy2(en)} + {72(e2) V 2(e3)}
= {kl V kn} =+ {kz V k3}
= k1 + ko.



14 S.Ravi Narayanan and S.Murugesan

Fori=3,4,5,--- ,n—1,

diymi(vi) = {r2(ei-1) Vy2(ei—2)} + {v2(eir1) V yales)}
={ki—1 Vki—o} +{ki V kiz1}
=Fki_o + kj.

d2y71(vn) = {12(e1) Vyalen)} + {12(en—1) Vy2(en—2)}
= {kl A kn} + {kn—l A kn—z}
=ky + kp_o.

Every two adjacent vertices have distinct do-pseudo degrees. Hence G is a 2- pseudo

neighbourly irregular intuitionistic fuzzy graph. O
Remark 4.2 Even if the values of the edges e1,es, €3, ..., e, are respectively (c1, k1), (c2, k2),
(c3,k3), -+, (cn, kn) such that ¢; < ¢;41 and k; > kijpq for i =1,2,--- ,n — 1 then G need not

be 2- pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Theorem 4.3 Let G : (A, B) be an intuitionistic fuzzy graph on a cycle G* : (V, E) of length n.
If the values of the edges e1,ea, €3, -+ , ey, are respectively (c1, k1), (ca, ka), (c3,ks), -+, (Cn, kn)
such that ¢; > c;+1 and k; < kiy1, fori=1,2,--- ,n—1, then G is a 2-pseudo neighbourly

wrreqular intuitionistic fuzzy graph.

Proof Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V, E) of length n. Let
e1,€e2,€e3,-++ ,e, be the edges of the cycle G* in that order. Let the values of the edges
e1,€ea,e3, -+, e, be respectively (c1,k1)(c2, ke), (c3,k3), -, (¢n, kn) such that ¢; > ¢;41 and
ki <kjyp fore=1,2,--- ,n—1,

diyp1(v1) = {p2(e1) A pa(e2)} + {p2(en) A pa(en—1)}
={ciNea} +{en Nenor}
=2+ Cp.

di2yp1(v2) = {p2(e1) A pz(en)} + {n2(e2) A pa(es)}
={ci1 ANen} + {ea Aest

=cCp + C3.
For 3<i<n-—1),

d2yp (vi) = {p2(ei-1) A pa(ei-2)} + {p2(eir1) A pa(ei)}
={cic1 ANcica} +{ci Aciy1}

=Ci—1+ Cit1-
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di2yp1(vn) = {p2(e1) A pa(en)t + {pa(en—1) A p2(en—2)}
= {Cl A Cn} + {Cnfl A Cn,Q}

=cp+Cp_1.

Now

diyv1(v1) = {r2(e1) Vyale2)} + {r2(en) V y2(en-1)}
={k1 Vka} +{knVkn_1}
=ko+ kn.

di2yy1(v2) = {r2(e1) Vy2(en)} + {712(e2) V 12(e3)}
={ki Vk,}+{kaVks}
=k, + ks.

For3<i<n-—1,

diy11(vi) = {r2(ei-1) Vy2(ei—2)} + {12(eiv1) V 12(ei)}
={kisiVkio}t +{kiVkis1}
=ki1+ kit

d2y71(vn) = {12(e1) V r2(en)} + {12(€n-1) V 12(€n—2)}
={kiVEky} +{kn-1VEkn_2}
=kp+kn_1.

Here, Every two adjacent vertices have distinct do- pseudo degrees. Hence G is 2-pseudo

neighbourly irregular intuitionistic fuzzy graph. a
Remark 4.4 Even if the values of the edges e1,e9,¢€3,- - , e, are respectively (c1, k1), (co, k2),
(c3,k3), -+, (cn, kn) such that ¢; > ¢;41 and k; < k;yq, fori =1,2,--+ ;n—1, then then G need

not be 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Remark 4.5 Let G : (A4, B) be an intuitionistic fuzzy graph on a cycle G* : (V, E) of length n.
If the values of the edges e1, eq, €3, - , e, are respectively (c1, k1), (co, ka), (c3,k3), -+, (Cny kn)

are all distinct, then G need not be 2-pseudo neighbourly irregular intuitionistic fuzzy graph.

85. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on a
Bi-star B,, ,,(m # n) with Specific Membership Functions

In this section, Theorems 5.1 and 5.6 provide 2-pseudo neighbourly irregularity on intuitionistic
fuzzy graph G : (A, B) on G* : (V, E) which is a Bistar B, y,(m # n).

Theorem 5.1 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V, E) which is a Bi-star

By,,m(m # n). If B is a constant function, then G is 2-pseudo neighbourly irregular intuitionistic
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fuzzy graph.

Proof Let vy, va,vs, -+ , v, be the vertices adjacent to the vertex x and wuy, us, us, -+ , Um
be the vertices adjacent to the vertex y and zy is the middle edge of K». Since B is a constant
function, then B(uv) = (c1,c2), a constant for all uv € E. So, da(vi) = n(c1,c2), (1 <
i <n—1), do(x) = m(cr,c2), dioy(y) = n(cr,c2) and dgy(u;) = mfci,co), (1 < i < m).
Then, dgy2)(vi) = mlci,c2), (1 < i < n—1), daye)(x) = nlcr,c2), dayez)(y) = m(ci,ca)
and d(q)(2)(ui) = n(cy,c2), (1 <4 < m). Hence digy2)(vi) # day2)(2), (1 <4 < n) and
d(a)(2) (:E) # d(a)(2) (y) and d(a)(2) (uz) 75 d(a)(2) (y), (1 << m) Hence G is 2—pseud0 neighbourly
irregular intuitionistic fuzzy graph. O

Remark 5.2 Even if B is a constant function, then G need not be 2-pseudo neighbourly totally
irregular intuitionistic fuzzy graph.

Remark 5.3 Converse of Theorem 5.1 need not be true.

Theorem 5.4 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V,E) which is a
Bi-star By m(m # n). If the pendant edges have the same membership values less than or
equal to membership value of the middle edge and same non-membership values greater than or
equal to mon-membership value of the middle edge, then G is a 2-pseudo neighbourly irreqular

intuitionistic fuzzy graph.

Proof Let vy, v2,vs, -+ , v, be the vertices adjacent to the vertex x and wuy, us, us, -+ , Um
be the vertices adjacent to the vertex y and xy is the middle edge of Ks. If the pendant edges

have the same membership value then

c1, if e; is an pendant edge. k1, if e; is an pendant edge.
Y2(ei) =

pa2(e;) = L . . .
ca, if e; is an middle edge. ko, if e; is an middle edge.

If ¢4 = ¢o and ky = ko then B is a constant function. By Theorem 5.1, G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

If ¢y < cg, and k1 > ko, then diay (v;) = n(c1, k1), (1 < i < n), doy(x) = m(er, k1), d2y(y) =
n(c1, k1), and d(g)(u;) = m(cr, k1), (1 <i <m).

Also, d(a)(2)(vi) = mler, k1), (1 <@ <), deay2)(2) = nler, k), diay2)(y) = mler, k1), and
da)(2)(ui) = n(cr, k), (1 <@ <m).

Hence d(a)(2)(vi) # d(ay2)(2),(1 < i < n), dy2)(T) # diay@)(¥): d@y@) (W) # daye)(Y),
(1 <i<m)and G is a 2-pseudo neighbourly irregular intuitionistic fuzzy graph. O

Remark 5.5 Even if the pendant edges have the same membership values less than or equal to
membership value of the middle edge and same non-membership values greater than or equal
to membership value of the middle edge, then G need not be 2-pseudo neighbourly totally

irregular intuitionistic fuzzy graph.
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§6. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on Sub(B, ,,) with
Specific Membership Functions

In this section, Theorem 6.1 provides a condition for 2-pseudo neighbourly irregularity on
intuitionistic fuzzy graph G : (A, B) on G* : (V, E), Sub(Bym),n,m > 3.

Theorem 6.1 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V,E) which is a
Sub(Bp,m),n,m > 3. If B is a constant function, then G is 2-pseudo neighbourly irregular

intuitionistic fuzzy graph.

Proof Let vy,va,vs, -+ , v, be the vertices adjacent to the vertex x and wuy, us, us, -+ , Um
be the vertices adjacent to the vertex y and xy is the middle edge of K5. Subdivide each edge
of By, m.

Then the additional edges are zw;, w;v; (1 <i < n) and yt;, t;u; (1 <i<n)and two more
edges xs, sy.

If B is a constant function say B(uv) = (c1, ¢2), for uv € E.

Case 1. If n # m, then d(y)(v;) = (c1,¢c2), (1 <0 < n), dy(w;) = n(cr,c), (1 < i < n),
diay(x) = (n+1)(c1,¢2),d2y(5) = (m+n)(c1, c2),d2)(y) = (m+1)(c1, c2), d(2)(t:) = m(c1,c2),
(1 <i<m), and dg)(u;) = (c1,¢2), (1 <i <m).

Hence we have, d(a)(2)(vi) # d(ay2)(wi), (1 < i < n) and daye)(wi) # dia)2)(z), (1 <
i <n), digy2)(T) # diay2)(5), day2)(5) # day2) (), dia)@2)(ti) # d@ay2)(y), (1 <i < m), and
day(2) (i) # diay2)(ui), (1 <i <m).

Hence G is a 2-pseudo neighbourly irregular intuitionistic fuzzy graph.

Case 2. If n = m, then d()(vi) = (c1,¢2), (1 <i < n), dgy(w;) = nler,e2), (1 < i < n),
diay(w) = (n + 1)(e1,¢2), d2)(s) = (2n)(c1,c2),d)(y) = (0 + 1)(c1,¢2),d2y(ti) = n(er,e2),
(1 <i<n), and doy(u;) = (c1,¢2), (1 <i < n).

Hence we have, d(,)(2) (v;) # d(a)(2) (w;), (1 <i<mn), d(a)(2) (w;) # d(a)(g)(x), (1 <i<n),
diay(2)(2) # dia)(2)(8); d(a)2)(8) # diay2)(¥): diay(2)(ti) # diay(2) (), (1 <0 < m), diay(e)(t:) #
diay(2)(wi), (L <i<m).

Hence G is a 2-pseudo neighbourly irregular intuitionistic fuzzy graph. a

Remark 6.2 Even if B is a constant function, then G need not be 2-pseudo neighbourly totally

irregular intuitionistic fuzzy graph.

Remark 6.3 Converse of the Theorem 6.1 need not be true.

87. 2-Pseudo Neighbourly Irregular Intuitionistic Fuzzy Graph on a Path of n
Vertices with Specific Membership Functions

In this section, Theorems 7.1 and 7.4 provides a condition for 2-pseudo neighbourly irregularity

on intuitionistic fuzzy graph G : (A, B) on a path G* : (V, E) on n vertices.

Theorem 7.1 Let G : (A, B) be an intuitionistic fuzzy graph on a path G* : (V, E) on n vertices.
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If the membership values of the edges e1,ea,e3,- -+ ,en_1 are respectively c1,ca,¢3,++ ,Cn_1 Such
that cp < ¢ < ¢c3 < -+ < ¢p—1, and non-membership values of the edges ey, es,es, ..., e,_1
are respectively ky, ko, ks, -+ kn—1 such that k1 > ko > ks > -+ > k,_1, then G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

Proof Let G : (A, B) be an intuitionistic fuzzy graph on a path G* : (V, E) on n vertices.

Let ey, e2,€3, - ,e,—1 be the edges of the path G* in that order. Let membership value of the
edges e, e9,€3,- -+ ,e,_1 be respectively ci1,co, 3, -+, cp—1 such that ¢; < co < ez, -, < cn_1
and non-membership values of the edges eq, €2, €3, -+ , e,_1 are respectively ki, ko, k3, -+ , kn_1

such that k1 > ko > k3 > --- > k1.

di2)(v1) = {(p2(e1) A pa(e2),v2(e1) Vy2(e2)} = {e1 A ca, k1 V ka} = (c1, k).
d(2)(v2) = {(p2(e2) A pa(es), v2(e2) Vys(e2)} = {ca A e, ka V kst = (c2, k2).
For 3 <i<n-—2,
diy(vi) = {{palei—1) A palei—2)} + {na(ei) A pa(eir1)}, {v2(€i-1) Av2(ei-2)}
H{valei) ANyaleis1)} = (cica + ciy kioo + Ki).
d2y(vn-1) = {p2(en—3) A p2(en—2)}, {12(en—3) A v2(€n—2)}
= {en-s3Acn-2,kn-3Nkn—2} = (cn_3,kn3).
diy(vn) = {p2(en—1) A p2(en—2)},{72(en-1) Av2(en—2)}

= {Cn—l A Cp—2, kn—l A kn—?} = (Cn—27 kn—2)'

So, every two adjacent vertices have distinct ds- pseudo degrees. Hence G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph. O

Remark 7.2 Even if the membership values of the edges e1,es,e3,--- ,e,_1 are respectively
€1,C2,C3,+ ,Cp—1 such that ¢; < ¢y < ¢3 < -+ < ¢,—1 and non-membership values of the edges
e1,€2,€3, -+ ,e,_1 are respectively ki, ko, ks, -+, k,—1 such that k1 > ko > ks > -+ > ky_1.
then G need not be 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.

Theorem 7.3 Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V, E), a path on n vertices.
If the membership values of the edges ey, es, es, -+ ,e,—1 are respectively c1,co,C3,-++ , Cp—1 Such
that ¢1 > co > ¢c3 > -+ ,> cp—1 and non-membership values of the edges ey, ea, ez, ,€p_1
are respectively ki, ko, k3, -+, kn_1 such that k1 < ko < k3 < -++ < kn_1. then G is a 2-pseudo

neighbourly irregular intuitionistic fuzzy graph.

Proof Let G : (A, B) be an intuitionistic fuzzy graph on G* : (V, E) is a path on n vertices.
Let €1, e9,€3, -+ ,e,—1 be the edges of the path G* in that order. Let membership values of the
edges ey, 9,63, -+ ,e,_1 are respectively c1, co,c3,...,¢p—1 suchthat c; > co >c3 > -+ > cpq

and non-membership values of the edges eq, €2, €3, -+ , e,_1 are respectively ki, ko, k3, -+ , kn_1
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such that k1 < ko < ks < -+ <kp_1.

dizy(v1) = {(p2(e1) A pa(ez),y2(e1) Ayale2))} = {e1 Aca, ki V ka} = (2, ko).
dizy(va) = {(p2(e2) A pa(es), y2(e2) Ayales))} = {ca Acs, ko V k3} = (c3, k).

For 3 <i<n-—2,

digy(vi) = {pa(ei-1) Apaei—2)} + {pa(ei) A paleir1)} + {r2(ei-1) Ara(ei-2)}
+{v2(ei) Aya(eig1)} = (cim1 + civ1, ki1 + kig1)
di2)(vn—1) = {p2(en—3) A pa(en—2),v2(€n—3) Av2(en—2)} = {cn—3 A cn—2,kn-3 AN kn_2}
= (cn-2,kn-2).
dioy(vn) = {p2(en—1) Apz(en—2),7v2(en-1) Ay2(en—2)} ={ca1 Acn—2,kn1Nkn_o}
= (en—1,kn-1).

Every two adjacent vertices have distinct do-pseudo degrees. Hence G is a 2-pseudo neigh-

bourly irregular intuitionistic fuzzy graph. |

Remark 7.4 Even if the membership values of the edges e1,eq,e3,--- ,e,_1 are respectively
€1,C2,C3,++ ,Cp—1 such that ¢; > ¢o > ¢3 > -+, > ¢,—1 and non-membership values of the
edges e1,es,e3, -+ ,e,_1 are respectively ki, ko, ks, -+, kp—1 such that k1 < ko < k3 < -+ <
kn—1. then G need not be 2-pseudo neighbourly totally irregular intuitionistic fuzzy graph.

References

[1] Akram. M, Dudek. W, Regular intuitionistic Fuzzy graphs, Neural Computing and Appli-
cation, 1007 /s00521-011-0772-6.

[2] Akram. M, Davvaz. B, Strong intuitionistic Fuzzy graphs, Filomat 26:1 (2012),177-196.

[3] Atanassov. K.T., Intuitionistic Fuzzy Sets: Theory, Applications, Studies in fuzziness and
soft computing, Heidelberg,New York, Physica-Verl., 1999.

[4] Atanassov. K.T., Pasi,R.Yager. G, Atanassov. V, Intuitionistic Fuzzy graph interpreta-
tions of multi-person multi-criteria decision making, FUSFLAT Conf., 2003,177-182.

[5] Bhattacharya. P, Some remarks on Fuzzy graphs, Pattern Recognition Lett, 6(1987), 297-
302.

[6] John N.Moderson and Premchand S. Nair, Fuzzy graphs and Fuzzy Hypergraphs Physica
verlag, Heidelberg(2000).

[7] Karunambigai. M.G., Parvathi. R and Buvaneswari. P, Constant intuitionistic Fuzzy
graphs, NIFS, 17 (2011), 1, 37-47.

[8] Karunambigai. M.G., Sivasankar. S and Palanivel. K, Some properties of regular in-
tuitionistic Fuzzy graph, International Journal of Mathematics and Computation, Vol.26,
Issue No.4(2015).

[9] Kaufmann. A., Introduction to the Theory of Fuzzy Subsets, Vol. 1, Academic Press, New
York, 1975.



20 S.Ravi Narayanan and S.Murugesan

[10] Nagoor Gani.A and Radha. K, On regular Fuzzy graphs, Journal of Physical Sciences,
12(2008) 33-40.

[11] Nagor Gani. A., Jahir Hussain. R., and Yahya Mohamed. S., Irregular intuitionistic Fuzzy
graphs, IOSR Journal of Mathematics, Vol.9, No.6(2014), 47-51.

[12] Parvathi. R and Karunambigai. M.G., Intuitionistic Fuzzy graphs, Journal of Computa-
tional Intelligence: Theory and Applications (2006), 139-150.

[13] Ravi Narayanan. S., and Murugesan. S., (2, (c1,c2))-Pseudo regular intuitionistic Fuzzy
graphs, International Journal of Fuzzy Mathematical Archieve, Vol.10, No.2, (2016), 131-
137.

[14] Ravi Narayanan. S., and Murugesan. S., ((r1,72),2, (c1, ¢2))- Pseudo Regular Intuitionistic
Fuzzy Graphs (Communicated).

[15] Rosenfeld. A., Fuzzy graphs, in: L.A. Zadeh and K.S. Fu, M. Shimura(EDs) Fuzzy sets and
their applications, Academic Press, Newyork 77-95, 1975.

[16] Zadeh. L.A., fuzzy sets, Information and Control, 8 (1965), 338-353.



International J.Math. Combin. Vol.4(2016), 21-28

A Generalization of the Alexander Polynomial

Ismet Altintas

(Faculty of Arts and Sciences, Department of Mathematics, Sakarya University, Sakarya, 54187, Turkey)

Kemal Tagkoprii

(Faculty of Arts and Sciences, Department of Mathematics, Bilecik Seyh Edebali University, Bilecik, 11000, Turkey)

E-mail: ialtintas@sakarya.edu.tr, kemal.taskopru@bilecik.edu.tr

Abstract: In this paper, we present a generalization of two variables of the Alexander
polynomial for a given oriented knot diagram. We define the Alexander polynomial of two
variables by an easy method which will be achieved as a result of the interpretation of
the crossing point as a particle with input-output spins in the mathematical physics. The
classical Alexander polynomial is the case of one of the variables to be equal to 1 in the

Alexander polynomial of two variables.
Key Words: Knot polynomials, Alexander polynomial, ambient isotopy.

AMS(2010): 57M25, 57M50, 57M10.

81. Introduction

A knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode
some of the properties of a given knot. The Alexander polynomial is the first knot polynomial.
It was introduced by J. W. Alexander in 1928 ([1]).

There are several ways to calculate the Alexander polynomial. One of them is the procedure
given by Alexander in his paper [1]. This procedure is briefly as follows: Given an oriented
diagram of the knot with n crossings. There are n + 2 regions bounded by the knot diagram.
The Alexander polynomial is calculated by using a matrix of size n x (n 4 2). The rows of the
matrix correspond to crossings, and the columns to the regions. Another one is to calculate
from the Seifert matrix ([2]). The Alexander polynomial can also be calculated by using the
free derivative defined by Fox [3,4].

Other knot polynomials were not found until almost 60 years later. In the 1960s, J.Conway
came up with a skein relation for a version of the Alexander polynomial, usually referred to as
the AlexanderConway polynomial [5]. The significance of this skein relation was not realized
until the early 1980s, when V. Jones discovered the Jones polynomial [6,7]. This led to the
discovery of more knot polynomials, such as the so-called Homfly polynomial [8]. The Homfly
polynomial is a generalization of the AlexanderConway polynomial and the Jones polynomial.

Soon after Jones’ discovery, Louis Kauffman noticed the Jones polynomial could be computed

1Received February 24, 2016, Accepted November 5, 2016.
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by means of a state-sum model, which involved the bracket polynomial, an invariant of framed
knots [9-13]. This opened up avenues of research linking knot theory and statistical mechanics.

In recent years, the Alexander polynomial has been shown to be related to Floer homol-
ogy. The graded Euler characteristic of the knot Floer homology of Ozsvath and Szabd is the
Alexander polynomial [14,15].

In this paper, we work on a generalization of two variables of the Alexander polynomial.
We define the Alexander polynomial of two variables by an easy method. In the method, the
Alexander polynomial of two variables is calculated by using a matrix of size n x n. The rows
of the matrix correspond to crossings of the oriented diagram of the knot with n crossings, and
the columns to the arcs. The classical Alexander polynomial is the case of one of the variables

to be equal to 1 in the Alexander polynomial of two variables.

82. Alexander Polynomial of Two Variables

A link K of k components is a subset of R* C R3U {oo} = 3, consisting of k disjoint piecewise
simple closed curves; a knot is a link with one component. In fact, two knots (or links) in R?
can be deformed continuously one into the other if and only if any diagram of one knot can
be transformed into a diagram for the knot via a sequence of the Reidmeister moves formed in
Figure 1. The equivalence relation on diagrams that is generated by all the Reidmeister moves

is called ambient isotopy. In the study, the word knot will be used instead knot and link.

S Y Y KR
I 1, 1 L\ I /L T T

0

Figure 1

The first Reidemeister move: I < Iy or I* < Iy;The second Reidemeister move:
L < Lo or L* «+ Lo and the third Reidemeister move: T < T".

Let K be an oriented knot diagram with n crossings. Three arcs of the curve of the oriented
diagram K encounters at a crossing. One of these arcs is overpass arc and the other two are
underpass arcs that follow one another at the crossing point. Let ¢; denote the ith crossing of
the oriented diagram K, i =1,2,--- ,n. We assume that the arcs s;, s; and s; are encounter
at the crossing ¢;, see Figure 2.

Figure 2 Crossings with positive sign (a) and negative sign (b)
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In mathematical physics if we interpret the crossing point as a particle with incoming spins
s;, s; and outgoing spins s;, sj for the crossing in Figure 2a, then an associated mathematical
expression to the crossing point can be regarded as the probability amplitude for this particular
combination of spins in and out [13]. We can make a similar comment for the crossing in Figure
2b, For now it is convenient to consider only the spins. The conservation of spin suggests the
rule that

S; + 85 =85 + Sk-

If x and y are algebraic variables, then
xs; +ys; —xs; —ysg =xs; + (y —x)s; —ysp =0

is a assigned equation to the crossing in Figure 2a. With the same thought, we can assign an

equation to the crossing in Figure B. We say the above equation, the crossing equation.

By assigning a crossing equation for each crossing of the oriented diagram K we have a

homogeneous system of n equations in n unknowns, and call diagram equation.

Since there are three unknowns (arcs) in a crossing equation, we get zero the coefficient
of (n — 3) arcs that are not in this crossing equation. Thus, we obtain a coefficients matrix
M of size n x n of the diagram equation. It is easy to see that the determinant, |M|, of the

coefficients matrix M is zero.

We may then regarded the matrix M as having entries in the ring Z[z,x~!,y,y~!] along
with its subring Z[z, y] has the property that any finite set of elements has a greatest common
divider. Any integer domain with these properties is called a greatest common divider. De-
terminants of the minors of size (n — 1) X (n — 1) of the matrix M are equal with multiplying

Fa*y!, k,1 € Z that has the greatest common divider.

Definition 2.1 We will call the Alexander polynomial of two variables that is the greatest
common divider of determinants of minors of size (n — 1) x (n — 1) of the matriz M and we’ll
denote it by V(x,y).

If Vg, (z,y) and Vi, (x,y) are polynomials that are equal with such a factor, we write
Vi, (2,y) = Vi, (x,y). Any one of the minors of size (n — 1) x (n — 1) of M can be taken
to be a presentation matrix for V(z,y) and its determinant can be taken to be V(z,y) with
multiplying by Fz*y, k,1 € Z, see [4,16].

Example 2.2 We now calculate the Alexander polynomial of two variables of the trefoil knot
as an example. Let K be the right-hand diagram trefoil knot drawn in Figure 3. The diagram

equation of the knot K is as follows:

xSz + Ys2 — xSo — ysy = —ys1 + (y — x)s2 + xs3 =0
ISo + YS1 — TS1 — YS3 = (y — :v)sl + zs9 —yss =0

x81 +ys3 — xSz —ysa = x5 —Ysa + (Y —x)s3 =0
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s, ¢ S5

Figure 3 The right-hand trefoil knot.

The coefficients matrix Mg of size 3 x 3 of this diagram equation is

The determinant, [M| of the coefficients matrix Mg is zero. Hence, any one of the minors
of size 2 x 2 of the matrix M, for instance, V1 is a presentation matrix and its determinant
is |V11| = —22 + 2y — y?. Thus, the Alexander polynomial of two variables for the knot K;
Vi(z,y) = 2% — zy + 2.

We have Vi (z,1) =22 —z +1fory=1 (or Vg(l,y) =1 —y+y* for z = 1). It is the
classical Alexander polynomial of the trefoil knot.

The following theorem gives that the Alexander polynomial of two variables is an invariant
of the knot.

Theorem 2.3 If K is an oriented knot diagram, then the Alezander polynomial of two variables,

Vi(x,y), of the knot K is an invariant of ambient isotopy.

Proof In order to prove that the Alexander polynomial is an invariant of ambient isotopy,
we must investigate the behavior of Vg (z,y) under the Reidemeister moves given in Figure 1.

Here, we shall investigate the behavior of Vg (x,y) under the diagrams given in Figure 4.

Figure 4

Diagrams for the proof of Theorem 2.3. For the first Reidemeister move: K «— Ki;

for the second Reidemeister move: K « Ko; for the third Reidemeister move: K «— Kj.



A Generalization of the Alexander Polynomial 25

Let K be the oriented knot diagram with n crossings given in Figure 4. The diagram

equation of the knot K is as follows:

TSp—1+ YSn—3 — TSp—3 —YSn = (Y—X)Sp—3+TSp_1—Ysp = 0

TSp-3 +YSn — TSp —YSp—2 = TSp-3—YSn2+(Y—z)sp = O

The coefficients matrix Mg of size n x n of this diagram equation is

Mg = |... y—x 0 o —y
T -y 0 y—=x

Thus, any one of the minors of size (n — 1) x (n — 1) of the matrix M, for instance,
V11 is a presentation matrix and its determinant |V1;| = Vg (x,y) with multiplying by Fa*y,
k,leZ.

Case 1. The behavior of Vg (z,y) under the first Reidemeister move

The diagram equation of the diagram K; with (n + 1) crossings given in Figure 4 is as

follows:

TSp—1 + YSn—3 — TSp—3 — YSnp = (y - :E)Sn—?) + TSp—1 — YSn = 0
TSp—3 + YSn+1 — TSn+1 — YSp—2 = TSp—3 —YSp—2+ (y - x)sn-i-l = 0

TSp — TSn+41 = 0

TSy + YSn — TSn4+1 — YSn

Hence, we have the following coefficients matrix M, of size (n—1) x (n—1) of the diagram

equation.
My — y—x 0 =z —y 0
1

T -y 0 0 y—=x

0 0 = —x
_ y—x 0 x —y 0

T -y 0 y—z y—=x

0 0 0 -z
Since Mg, | = —z|Mg| = 0, the minors of size (n — 1) X (n — 1) of Mg, are equal the

corresponding minors size (n — 1) X (n — 1) of Mg and hence, Vi (z,y) = Vi, (z,y). In that



26 Ismet Altintas and Kemal Taskoprii

case Vi (x,y) is unchanged under the first Reidemeister move.
Case 2. The behavior of Vi (z,y) under the second Reidemeister move

We obtain the following diagram equation from the diagram K> with (n + 2) crossings

given in Figure 4.

TSp—1 +YSp—3 — TSp—3 — YSp, — (y — x)sn_3 +zsp—1—ys, = 0
TSpn—3 + YSn — TSy — YSp—2 = TSp_3—YSno+ Wy —x)sp, = 0
TSn + YSn—2 — TSnt1 —YSn = YSp—o2+ (T —Y)Sp —xSpy1 = O
TSpt1 +YSn — TSy — YSny2 = (Y —T)Sp + TSpt1 —YsSnpz = 0

The coefficients matrix M, of size (n + 2) x (n + 2) of the diagram equation of K here

is as follows.

oo y—x 0 —y 0 0

Mg, =1|... & —y 0 y—z 0 0
y 0 z—y —x O

0 0O 0 y—x =z —y

y—x 0 x —y 0 0

= T -y 0 y—x O 0

y 0 z—y —x O

i 0 y 0 0 0 —Y|

Since |Mk,| = zy|Mg| = 0, the minors of size (n — 1) x (n — 1) of Mg, are equal the
corresponding minors size (n — 1) X (n — 1) of Mg and Vg (z,y) = Vg, (x,y). Thus Vg (x,y)

is unchanged under the second Reidemeister move.

Case 3. The behavior of Vi (z,y) under the third Reidemeister move

We have the following diagram equation from the diagram K3 with (n+ 1) crossings given

in Figure 4.
TSp—1 4+ Ysp — TSy —YSnp1 = XSp—1+ (Y —2)Sp —YSpp1 = O
TSpn—3 + YSn — TSy — YSp—2 = TSp_3—YSno+ (y—x)s, = 0
TSp41 + YSn—2 — TSp—2 —YSn = (Y—2)Sn—2—YSn+2Spp1 = 0

The coefficients matrix Mg, of size (n 4+ 1) x (n+ 1) of the diagram equation of K3 here
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is as follows.

0 0 T -z -
My, — y y
r —y 0 y—z O
0 y—z 0 —y T
_ y—xr 0 o -y xz—y
T -y 0 y—=z 0
0 0 0 0 T
Since |My,| = |Mg| = 0, the minors of size (n — 1) x (n — 1) of Mg, are equal the

corresponding minors size (n — 1) x (n — 1) of Mg and Vi (z,y) = Vi, (2,y). So Vi (z,y) is
unchanged under the third Reidemeister move. Thus proof is completed. O

It is easy to see that, in present of the first and the second Reidemeister moves, the diagram
K3 in Figure 4 is equivalent to the third Reidemeister move, see Figure 5.

@D?@—Dl H@—y - Q—;l

Figure 5 Equivalence of K to K3 under the third Reidemeister move.

There are different variants, depending on orientation, of the diagrams in Figure 4. The-
orem 2.1 can also be proved in the same way for these variants of the diagrams. All possible

variants of the diagrams used in the proof of Theorem 2.1 is drawn in Appendix.

PP B
Eﬂ@f’%ﬁf}%%@

* K* K*! K* K*! K3*r

Appendix

Figure 6
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81. Introduction

Bishop frame extended to study canal and tubular surfaces [1]. Rotating camera orientations
relative to a stable forward-facing frame can be added by various techniques such as that of
Hanson and Ma [2]. This special frame also extended to height functions on a space curve [3].

The construction of the Bishop frame is due to L. R. Bishop and the advantages of Bishop
frame, and comparisons of Bishop frame with the Frenet frame in Euclidean 3-space were given
by Bishop [4] and Hanson [5]. That is why he defined this frame that curvature may vanish
at some points on the curve. That is, second derivative of the curve may be zero. In this
situation, an alternative frame is needed for non continously differentiable curves on which
Bishop (parallel transport frame) frame is well defined and constructed in Euclidean and its
ambient spaces [6,7,8].

A regular curve in Euclidean 3-space, whose position vector is composed of Frenet frame
vectors on another regular curve, is called a Smarandache curve. M. Turgut and S. Yilmaz
have defined a special case of such curves and call it Smarandache T'By curves in the space Ef
([9]) and Turgut also studied Smarandache breadth of pseudo null curves in Ef ([10]). A.T.Ali
has introduced some special Smarandache curves in the Euclidean space [11]. Moreover, special

1Received April 3, 2016, Accepted November 6, 2016.
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Smarandache curves have been investigated by using Bishop frame in Euclidean space [12].
Special Smarandache curves according to Sabban frame have been studied by [13]. Besides,
some special Smarandache curves have been obtained in E? by [14].

Curves of constant breadth were introduced by L.Euler [15]. Some geometric properties of
plane curves of constant breadth were given in [16]. And, in another work [17], these properties
were studied in the Euclidean 3-space E3. Moreover, M Fujivara [18] had obtained a problem to
determine whether there exist space curve of constant breadth or not, and he defined breadth
for space curves on a surface of constant breadth. In [19], these kind curves were studied in four
dimensional Euclidean space E*. In [20], Yilmaz introduced a new version of Bishop frame in
E3} and called it Bishop frame of type-2 of regular curves by using common vector field as the
binormal vector of Serret-Frenet frame. Also, some characterizations of spacelike curves were
given according to the same frame by Yilmaz and Unliitiirk [21]. A regular curve more than
2 breadths in Minkowski 3-space is called a Smarandache breadth curve. In the light of this
definition, we study special cases of Smarandache curves according to the new frame in E3. We
investigate position vector of simple closed spacelike curves and give some characterizations in
case of constant breadth according to type-2 Bishop frame in E. Thus, we extend this classical
topic in E? into spacelike curves of constant breadth in E3, see [22] for details.

In this study, we introduce new Smarandache curves of a spacelike curve according to the
Bishop frame of type-2 in E}. Also, Smarandache breadth curves are defined according to this
frame in Minkowski 3-space. A third order vectorial differential equation of position vector of
Smarandache breadth curves has been obtained in Minkowski 3-space.

82. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves
in the Minkowski 3-space E3 are briefly presented. There exists a vast literature on the subject
including several monographs, for example [23,24].

The three dimensional Minkowski space E} is a real vector space R® endowed with the

standard flat Lorentzian metric given by
(,); = —da? + da3 + da3,

where (71,2, 73) is a rectangular coordinate system of E7. This metric is an indefinite one.
Let u = (u1,u2,u3) and v = (v, vq,v3) be arbitrary vectors in E}, the Lorentzian cross

product of u and v is defined as

Recall that a vector v € E$ has one of three Lorentzian characters: it is a spacelike vector
if (v,v) > 0 or v = 0; timelike (v,v) < 0 and null (lightlike) (v,v) = 0 for v # 0. Similarly, an
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arbitrary curve § = §(s) in E} can locally be spacelike, timelike or null (lightlike) if its velocity
vector o are ,respectively, spacelike, timelike or null (lightlike), for every s € I C R. The
pseudo-norm of an arbitrary vector a € E} is given by |la|| = v/[(a,a)]. The curve a = a(s) is
called a unit speed curve if its velocity vector o’ is unit one i.e., ||| = 1. For vectors v,w € E,
they are said to be orthogonal each other if and only if (v,w) = 0. Denote by {T', N, B} the

moving Serret-Frenet frame along the curve o = a(s) in the space Ej.

For an arbitrary spacelike curve o = a(s) in Ef, the Serret-Frenet formulae are given as

follows
T 0 x O T
N |=|~v 0 7 |.-| N |, (2.1)
B’ 0 7 0 B

where v = F1, and the functions x and 7 are, respectively, the first and second (torsion)

T/ d / 1 1
curvature. T(s) = a'(s),N(s) = %, B(s) =T(s) x N(s) and 7(s) = %‘S)WQ)
If v = —1, then «(s) is a spacelike curve with spacelike principal normal N and timelike

binormal B, its Serret-Frenet invariants are given as

k(s) = V/(T"(s),T'(s)) and 7(s) = — (N'(s), B(s)) -

If v = 1, then «(s) is a spacelike curve with timelike principal normal N and spacelike

binormal B, also we obtain its Serret-Frenet invariants as

r(s) = /= (T"(s), T'(s)) and 7(s) = (N'(s), B(s)) -

The Lorentzian sphere S? of radius r > 0 and with the center in the origin of the space E?
is defined by

S3(r) ={p = (p1,p2,p3) € E} : (p,p) =r?}.

Theorem 2.1 Let a = a(s) be a spacelike unit speed curve with a spacelike principal normal.
If {21,Q09, B} is an adapted frame, then we have

9 0 0 &1 931
O l= 0 0o &/ | (2.2)
B’ -& =& 0 B

Theorem 2.2 Let {T, N, B} and {Q1,Q2, B} be Frenet and Bishop frames, respectively. There

exists a relation between them as
sinh6(s) coshf(s) 04

T 0
N | = | coshf(s) sinhf(s) 0 |.| Q2 |, (2.3)
B 0 0 1 B
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where 6 is the angle between the vectors N and €.
&1 = 7(s) cosh0(s), & = 7(s) sinh 6(s).

The frame {4, Q, B} is properly oriented, and 7 and (s) = [k(s)ds are polar coordinates
0

for the curve @ = (s). We shall call the set {Q,Qy, B,£;,&}  as type-2 Bishop invariants

of the curve a = a(s) in Ej.

83. Smarandache Curves of a Spacelike Curve

In this section, we will characterize all types of Smarandache curves of spacelike curve o = «(s)

according to type-2 Bishop frame in Minkowski 3-space Ej.

3.1 Q2:Q9—Smarandache Curves

Definition 3.1 Let a = a(s) be a unit speed regular curve in ES and {Q$,QS, By} be its

moving Bishop frame. Q$Q8—Smarandache curves are defined by
B(s™) = L(08 +03). (3.1)

Now we can investigate Bishop invariants of 2¢'(25'—Smarandache curves of the curve ao =

a(s). Differentiating (3.1) with respect to s gives

B= G = 7€ )b, (3.2
and ds* 1
Ty 5 = (6 — &) B,
where P
=l el (3.3

The tangent vector of the curve § can be written as follows

Ts = Ba. (3.4)
Differentiating (3.4) with respect to s, we obtain

dTﬁ ds*

Substituting (3.3) into (3.5) gives

V2
Th = ———7a (67O + £593).
le¢ — &g
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Then the first curvature and the principal normal vector field of § are, respectively, com-

puted as
V2
|z3]| = s = e V& @
&5 — &5
and .
Np = (€905 +£599).

V=(€7)? +(65)?

On the other hand, we express

1 _Q? Q% 6&
Bs = 0 0 1 1,
@+ &)
€& 0

So the binormal vector of § is computed as follows
-1
V= (E7)? + (68)?

Differentiating (3.2) with respect to s in order to calculate the torsion of the curve g, we
obtain

Bg =

(€07 +£7Q3).

.. 1 . .
0= —Bl-(er + )T — (& + &) + (& + &) Bal,
and similarly
B = Jl(=3pép — 26068 — Epeg — €0€0)Q8
+(—26088 — 2(€9)? — &8s — £565)08
H(EF + 88 — (60)% — (60)2%€8 — £0(88)% + (£8)%)Bal.
The torsion of the curve (3 is found

ol E@-g)y
TP+ (&)

(61 + &) Ka(s) — (&7 +£3)€65 K (s)];

where
Ki(s) = =306y — 2608y — £068 — £0€e,
K)(s) = —260€8 — 2(£5)? — €065 — €568,
Ka(s) = &0 + &8 — (60)% — (60)2€8 — £0(88)% + (¢9)%.

3.2 ;B—Smarandache Curves

Definition 3.2 Let a = «a(s) be a unit speed regular curve in E3} and {Qf,Q%, By} be its
moving Bishop frame. QY B—Smarandache curves are defined by

1

B(s*) = (QF + Ba). (3.6)

S

2
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Now we can investigate Bishop invariants of II{' B,—Smarandache curves of the curve

a = «fs). Differentiating (3.6) with respect to s, we have

ﬁ dS dS - ﬁ( lBOC_ 191 - 292)7 (37)
and ds* 1
s
THTE_:'?E(?B“_ TOf - £503),
where . N
ds” _ & (3.8)
ds 2

The tangent vector of the curve 3 can be written as follows

V2

o=

—a (€10 — €995 + £ Ba). (3.9)

Differentiating (3.9) with respect to s gives

Ty ds* &
ds* " ds /2

(L1 ()25 + Lo(s)08 + Ls(s)Ba), (3.10)

where

S

Li(s) = €0 — (€0)2 + 5) = eves,
2
La(s) = —(€0) + (682 + &5 1552
2

Substituting (3.8) into (3.10) gives

2v/2
(€5)?

then the first curvature and the principal normal vector field of 3 are, respectively,

T =

(L1(8)Q5 + La2(8)Q23 + L3(s)Ba),

ML2 )+ L3(s) — L3(s),

and
-1

Np =
VIi(s) + L3(s) — L3(s)
On the other hand, we have

(Ll(S)Q(ll + LQ(S)Q% + Lg(S)BQ).

V3
T La(s S Ls(s))Q
VI T ) L ) L)

+(EFL1(s) + €7 L3(5))025 + (65 La(s) — &7 La(s)) Bal-

By =

Differentiating (3.7) with respect to s in order to calculate the torsion of the curve g3, we
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find
1

B=—=[—((£8)? + €08 + (—€8€8 — €9)08 — (£ — (60)2 + (£5)?) Bal,

S

2

and similarly .
g = ﬁ(—wé? — é’f)ﬂ% + F—é?és“ — 52 — £0€8)Q8
H(—(€9)% — €260 + £0€5€5 — €368)Ba)-

The torsion of the curve (3 is

e 4
7= D gati(s) - g5 0a(s) — 6500,

where
My(s) = —3£06y — 26065 — €968 — £0€8,
My(s) = —26068 — 2(65)? — £065 — €588,
Ms(s) = € + &5 — (68)° — (£0)2€8 — £8(€9) + (69)%

3.3 Qs B—Smarandache Curves

Definition 3.3 Let a = a(s) be a unit speed regular curve in ES and {Q$,QS, By} be its

moving Bishop frame. 1§ B—Smarandache curves are defined by

_ L

Bls™) = 75 (08 + Ba) (3.11)

Now we can investigate Bishop invariants of Qf B,—Smarandache curves of the curve

a = «fs). Differentiating (3.11) with respect to s, we have

. df dst 1

_—_—:__QBQ_ OLQOL_ O‘QO‘7 )
B ds ds \/5( &5 £ Q8 - £9Q3) (3.12)
and ds* ]
s
Tﬁ-g = ﬁ(‘ﬁ?g? —£508 — 9 Ba),
where

ds* _ [2(£8)% - (&1)°
= - 2 . 1) (3.13)

The tangent vector of the curve § can be written as follows

. _ &0 - 605 & Ba

3.14
NG @) 3
Differentiating (3.14) with respect to s gives
dTyz ds*
0 2 = (N1(5)0 + Na(s)8 + N3(s)Ba), (3.15)

ds* " ds
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where
Ny ( ):%(45252 25151)( ( ) (5 )2)
—(2(68)2 — (1)) T €8 + (2(€9)2 - ( ))%15?5%,
No(s) = (46565 — 267€0)(2(69)2 — (60)2) =
—(2(88)2 — (1)) T & + M%V% £0)2)(€8)2,
N3(s) = (46865 — 260€0)(2(69)2 — (60)7) =

2
—(2(68)% = (€9)) 7 ((€8)* — (€)* = &3).
Substituting (3.13) into (3.15) gives

2
2(65)% — (&1)?

then the first curvature and the principal normal vector field of 3 are, respectively, found as

Ty = (N1() + Na(5)Q5 + N3(s)Ba),

follows

oz VT (5) + N3 (5) + N3 (),

" 2(¢5 )

and
-1

Np =
VNZ(s) + N2(s) + N2(s)
On the other hand, we have

(N1($)Q + Na(5)Q25 + Ls(s)Ba). (3.16)

1
—£9 N3 (s S Na(s))Qg
V2(es 2\/ s) + N3 (s )+N§(8)[( N F ) (3.17)

( N3(s) + €5 N1(s))25 + (£ N2 — £5' N1 (s)) Bal-

Bg =

Differentiating (3.12) with respect to s in order to calculate the torsion of the curve 3, we

obtain

B= L [(6gEs + 0008 + ((€2)2 — £)98 + (—€5 + €5 — (€)2)Bal,

V2
and similarly .
g = ﬁ[@égs% ﬂféé“é? — &y — o + (6308
+(3E8E5 — €5 — (69)2 — (£0)%€8)Q8
F((60)%68 — (£3)° + €565 — €5 + €8 — 3E0EY) Ba ).

The torsion of the curve 3 is

a2 _ (a2
75 = W{w (5)((€8)2 — E5) — Pa(s)(—E5 + €2 — (e)2)er

+[Ps(s)(6565 — £8) — Pu(s)(—€8 + &5 — (£0)?))&s
+[Pa(s)(£865 — £8) — Pr(s)((€8)% — £9)]¢5°),
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where
Pi(s) = 26860 + £567 — £ — €060 + €065 + (€90)°,
Py(s) = 36568 — &5 — (£8) — (€9)¢s,
Ps(s) = (£8)%68 — (€9)° + £5:€5 — £ + &5 — 3Eey.

3.4 Q:Q9B—Smarandache Curves

37

Definition 3.4 Let a = a(s) be a unit speed regular curve in ES and {Q$,QS, By} be its

moving Bishop frame. Q¢Q8 B—Smarandache curves are defined by

B(s*) = T(QO‘ + Q5 + B,).

(3.18)

Now we can investigate Bishop invariants of Q{Q§ B—Smarandache curves of the curve

a = «a(s). Differentiating (3.18) with respect to s, we have

B = 5 ds %(— 1O — 6505 + (& — €9)Ba),
and ds* .
s
TQ-E = ﬁ(— O =505 + (& — £5)Ba),
where

ds* _ \/ (68— &)% + (£9)2 — (&8)?
ds 3 )

The tangent vector of the curve ( is found as follows
1
Tp =
VI =€)+ ()7 - (€7

Differentiating (3.21) with respect to s, we find

Ty ds*

C 2~ QU — QUED) + Qe — Q)51

H-Q(9)& — Q)7 €8 + Q(5)(€5) — Q' ()81
HQ(s)(€F — £5)-Q(s)(€7)°+Q" () (67 — £5)1B

where
1

VET =g &) - €@
Substituting (3.20) into (3.22) by using (3.23) gives

ﬁ(
K(s)

Q(s) =

Ty = My (s)QF + Ma(5)QS + M3(s)Ba,),

(=670 = €595 + (€7 = &) Ba)-

(3.19)

(3.20)

(3.21)

(3.22)
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where

Ri(s) = —Q(s)&5 — Q(s)(69)? + Q()€065 — Q' (s)&8,
Ry(s) = —Q(s)€8 — Q)55 + Q(s)(£8)% — Q'(5)&8, (3.23)
Rs(s) = Q(s)(&8 — £8) — Q(s)(£8)% + Q' (s) (&5 — &3).

Then the first curvature and the principal normal vector field of § are, respectively, obtained

as follows

Kp = \/ R3(s) + R3(s) + R3(s),

and

-1 a _ o a\(O)o
Bs = (s)/—R2(s) + R3(s) + R2(s) [(Ma(&F — &) + M3&5)9Q8 (3.24)

(M1 (61 = €3) + M3&5)25 + (85 Ma(s) — €1 Ma(s)) Bal.

Differentiating (3.19) with respect to s in order to calculate the torsion of the curve 3, we

obtain
1

EH? — (£9)2 + £568)08 o
+(—E5 + (£3)% — €765 + (€9)%)Q9 + (&7 — &8 — (£8)?)Bal,

8=

and similarly .
4= ﬁ.[.(—é‘f‘ - 2.5?5%.+ £ +€068)98
+(—€5 + 46568 — 168 — 267°65)Q%
H(ESES +E7(E5)” — (67)° — (60)° + (€1)°¢8) Bal.
The torsion of the curve (3 is
K?(s)

1 . ) -
0 (S>+M2< () (@a(9) (€8 + 2(E8) — €748

T3 =

—Qa(8) (€8 — €8 — £7€9)1ER + [Qs(s)(—E0 — (€0)2 + £0€5)
—Q1(s)(—&5 + 2(@) — £069))E8 — [Qa(9)(—€8 — (€8) + £0€5)
—Q1(s)(—€8 +2(£8)% — £8€9)] (&5 — €90},

where
Qi(s) = —=&7 — (&) + £9¢8,
Qa(s) = —£0€8 + 26568 — &5,
Qs(s) = £7(68)2 — (€0)? — (60)% + (£0)%¢s + £5¢5.

3.5 Example

Example 3.1 Next, let us consider the following unit speed curve w = w(s) in E} as follows

w(s) = (s, v2In(sec h(s)), V2 arctan(sinh(s))). (3.25)
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It is rendered in Figure 1, as follows

Figure 1

The curvature function and Serret-Frenet frame of the curve w(s) is expressed as

T = (1, —v/2tanh(s), v2sech(s)),
N = (0, —sech(s), — tanh(s)), (3.26)
B = (v/2, — tanh(s), sech(s)),

and
k= V/2sech(s),0 = v2[ sech(s)ds = V2 arctan(sinh(s)). (3.27)
0

- AT
oy |_n|»|vl.v-! ~pplxdd

Figure 2 ;Qs-Smarandache curve Figure 3 (2; B-Smarandache curve
Also the Bishop frame is computed as

Q2 = (—sinh #, —y/2sinh @ tanh(s) — cosh @ sech(s),

(3.28)
—+/2sinh @ sec h(s) — cosh § tanh(s)),

Qs = (cosh @, —v/2 cosh § tanh(s) + sinh # sech(s),

(3.29)
V2 cosh f sec h(s) — sinh  tanh(s)),
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B = (v/2, — tanh(s), sech(s)). (3.30)

Let us see the graphs which belong to all versions of Smarandache curves according to the
Bishop frame in Ej.

The parametrizations and plottings of Q12,1 B, Q5B and 1 B— Smarandache curves
are, respectively, given in Figures 2-5.

Figure 4 ()5 B-Smarandache curve Figure 5 ;) B-Smarandache curve

§4. Smarandache Breadth Curves According to the Bishop Frame of Type-2 in E}

A regular curve more than 2 breadths in Minkowski 3-space is called a Smarandache breadth

curve.

Let o = «(s) be a Smarandache breadth curve, and also suppose that o = a(s) is a simple
closed curve in E$. This curve will be denoted by (C). The normal plane at every point P on
the curve meets the curve at a single point @ other than P. We call the point @) as the opposite
point of P

We consider a curve o = a*(s*) ,in the class I, which has parallel tangents ¢ and ¢* at
opposite directions at the opposite points o and a* of the curve. A simple closed curve having
parallel tangents in opposite directions at opposite points can be represented with respect to
Bishop frame by the equation

a*(s*) = afs) + X + pfde + B, (4.1)

where A(s), (s) and 7(s) are arbitrary functions, @ and «* are opposite points.

Differentiating both sides of (4.1) and considering Bishop equations, we have

da* s dh du
Al 951 A ( S né1 + 1) + (ds né2)822 (12)
+(5L 4 A& — o) B.

ds
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Since QF = —y, rewriting (4.2) we obtain respectively
dX _dst d d
=1~ e R R (43)
ds ds ds

If we call 6 as the angle between the tangent of the curve (C') at the point a(s) with a
do
given direction and consider == (4.3) turns into the following form:
s

d\ & 1. ds' dp & dp

A p
_ a1 _ M _2e L H 4.4
d9 777_ 7_(1+ dS )7 de nT7 d9 T§1+T§27 ( )

ds* ds* df 1ds* ds*
where ds = do%—;%,l-f- ds —f(6‘),7'750

Using system (4.4), we have the following vectorial differential equation with respect to A
as follows

A3\ 72 5152 &1y T L dPA 140
o+ a0 -2 En T }d92+{<7>
+[%<%>'1'<1—A><€1>' [5;52 1)
§& & & & T T, d\
—[z}i)] 24 [5 (& ><§>f<9>] 7
152 1 T T T
H= 73 (= )](@)(5—1)}(—) {— 15— a0 do2 (4.5)
{<5l>'2+[i§2<§1>]5 £(6) + <§—1— D FO)
HIEh2 + ;ﬂ miﬁmg( Y10+ 7 f'<9>+§—11}
66 & 1 1, " ’
HEZEYVUC V160~ ()70 + 2216

FEYFO) + 27 O) =0,

The equation (4.5) is a characterization for o*. If the distance between opposite points of
(C) and (C*) is constant, then we can write that

la* —al| = =A% + % +n? = I? = const., (4.6)
hence, we write
d\ dp dn
A= 4.7
Mg g T ap = 47)
Considering the system (4.4) together with (4.7), we obtain
AFO) = (2 — s — ). (4.9
From system (4.4) we have
Td\x 1
R L ()} 4.9
s A3l (49)
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Substituting (4.9) into (4.8) gives

d\ _Af(0)
T +f(0) = G(_H) , (4.10)
where G(6) = S ™€y — &1, 7 #£ 0.
Thus we find
A:?@(L—1)de (4.11)
VIO, ’ :
and also from (4.4)2, (4.9) and (4.4); we obtain
_Gdxf(0)
= {)‘(@ + T)§2d9' (4.12)
and
9T dh o f(0)
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Abstract: The concept of locally dually flat Finsler metrics originate from information
geometry. As we know, (a, 3) - metrics defined by a Riemannian metric o and a 1-form 3,
represent an important class of Finsler metrics .In the year 2014, S. K. Narasimhamurthy
JAR. Kavyashree and Y. K. Mallikarjun obtained characterization of locally first approxi-
mate Matsumoto metric [1].In continuation of the paper we study and characterize locally
dually flat for a special Finsler (¢, 3) metric F = a4+ 5+ i—2 + g—; with isotropic S-curvature,

which is not Riemannian.

Key Words: Finsler metric, Riemannian metric;one form metric, S-curvature, locally

dually flat metric, locally Minkowskian metric.

AMS(2010): 53C60, 53B40

81. Introduction

The notion of dually flat metric was first introduced by S. I. Amari and H. Nagaoka, while
studying the information geometry on Riemannian spaces [2]. Later, Z. Shen extended the
notion of dually flatness to Finsler metrics [7]. Dually flat Finsler metrics form a special
important class of Finsler metrics in Finsler information geometry, which play a very important
role in studying flat Finsler information structures ([4], [5], [6], [7], and [11]). In 2009, the
authors of [4] classified the locally dual flat Randers metrics with almost isotropic flag curvature.
Recently, Q. Xia worked on the dual flatness of Finsler metrics of isotropic flag curvature as
well as scalar flag curvature ([10], [11]). Also, Q. Xia studied and gave a characterization of
locally dually flat (o, 3)-metrics on an n-dimensional manifold M (n > 3) [9]. Further in 2014,
the authors of [1] discuss characterization of locally dually flat first approximate Matsumoto

metric.

The first example of non-Riemannian dually flat metrics is the Funk metric given by ([4],

1Received June 13, 2016, Accepted November 8, 2016.
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o VO TPP @y | (o)
1— |zf? 1— |zf?

This metric is defined on the unit ball B™(u) € R™ and is a Randers metric with constant
flag curvature K = _Tl. This is the only known example of locally dually flat metric with
non-zero constant flag curvature up to now.

In this paper, we study and characterize locally dually flat Finsler metric with isotropic

S-curvature, which is not Riemannian.

82. Preliminaries

Let M be an n-dimensional smooth manifold. We denote by TM the tangent bundle of M and
by (z,y) = (z*,4%) the local coordinates on the tangent bundle TM. A Finsler manifold (M,
F) is a smooth manifold equipped with a function F' : TM — [0, 00), which has the following
properties:

e Regularity: F is smooth in TM \ {0};
e Positive homogeneity: F(x, A\y) = A\F(z,y), VA > 0;

10%F?(x,
e Strong convexity: the Hessian matrix of F?, g;;(z,y = —M is positive definite

2 Qxtoyd
on TM \{0}.

We call F and the tensor g;; the Finsler metric and the fundamental tensor of M, respec-
tively.

For a Finsler metric F = F(x, y), its geodesic curves are characterized by the system of
differential equations ¢* + 2G*(¢) = 0, where the local functions G* = G*(z,y) are called the
spray coeflicients and given by

"
Gi = % {[F?)pryy® — [F2a ),y € Tu M.

Definition 2.1 A Finsler metric F = F(z,y) on a manifold M is said to be locally dually flat

if at any point there is a standard coordinate system (x',y') in TM which satisfies

F2) yk = 2[F?],
[F] gk yry .

In this case, the system of coordinates (x%) is called an adapted local coordinate system.
It is easy to see that every locally Minkowskian metric is locally dually flat. But the converse

is not generally true [4].

Definition 2.2 A Finsler metric is said to be locally projectively flat if at any point there is a
local coordinate system in which the geodesics are straight lines as point sets. It is known that

a Finsler metric F(z, y) on an open domain U C R™ is locally projectively flat if and only if its
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geodesic coefficients G* are of the form
G' =Py

where P : TU = UXR"™ — R is positively homogeneous of degree one, P(x, \y) = AP(z,y), Y\ >
0. We call P(z, y) the projective factor of F(z, y).

Lemma 2.1([4]) Let F = F(z, y) be a Finsler metric on an open subset U C R™. Then F is

locally flat and projectively flat on U if and only if Fyxo = CEFFx

vk, where Cis a constant.

The S-curvature is a scalar function on TM, which was introduced by Z. Shen to study
volume comparison in Riemann-Finsler geometry [3]. The S-curvature measures the average
rate of change of (T, M, F, = F|T,M) in the direction y € T, M. Tt is known that S = 0 for
Berwald metrics.

Definition 2.3 A Finsler metric F on an n-dimensional manifold M is said to have isotropic

S-curvature if S = (n + 1)c(x)F, for some scalar function ¢ on M.

For a Finsler metric F on an n-dimensional manifold M, the Busemann-Hausdorff volume
form dVp = op(z)dzt - - - dx™ is defined by

B VolB"(1)
N Vol(yt € R"|F($,yi%

or

« <1)

Here Vol denotes the Euclidean volumes and B" (1) denotes the unit ball in R™ . Then the

S-curvature is defined by
_0G" ;0(Inop)
S() = G (o)~ =g

where
i (9(Inap)

y=y Wh € T, MI[8].

For an (o, 3)-metric, one can write F' = a¢(s), where s = g and ¢ = ¢(s) is a C*° function
on the interval (—bg,by) with certain regularity properties, o = /(a;;3'y’) is a Riemannian
metric and 3 = b;(z)y’ is a 1-form on M.

We further denote

by ;07 = db; — b;6!,

where 0" = dz' and 9;- = I‘zkd:ck denotes the coefficients of the Levi- Civita connection form of
a.

Let 1 1
rig = 5(big; + bj10), si5 = 5 (bigj = bypa)-
Clearly, 3 is closed if and only if s;; = 0 . An (o, §)-metric is said to be trivial if r;; =
s;; = 0.We put
Ti0 = Tijyj7 00 = Tijyiyja ri = Tijbiv

— j _ 7 _ 0
S0 = Siij,Sj = Sijb , 80 = Sjb .
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By direct computation, we can obtain a formula for the mean Cartan torsion of an («, 3)-

metric as follow:

o(p — s¢’
Ii = _‘(QT:ﬁ)(ozbi — Syl)

Clearly, an (o, 8) -metric F' = ag¢(s), s = g is Riemannian if and only if ¢ = 0. Hence, we
further we assume that ¢ # 0.

Theorem 2.2([9]) Let F = ad(s),s = g be an («, B)-metric on an n-dimensional manifold
M™(n > 3), where a = /(aijy*y?)is a Riemannian metric and 3 = b;(x)y* # 0. is an 1-form
on M. Suppose that F is not Riemannian and (;5/ (s) #0. Then F is locally dually flat on M if
and only if (o, B) and ¢ = ¢(s) satisfy

1
(1) S0 — 5(601 - 0bl);

2 2 1
(2) o0 = goﬂ + [T+ 3 (b27' — Hlbl) o? + §(3k2 _9_ 3I€3b2)7'62;
(3) GL = 2120+ by — 2 + 2002 + Lyt

(4) T[s(ka — k3s?)(p¢) — s¢'° — 598" ) — (¢'° + d¢") + k1p(¢p — 5¢/] = 0.

where 7 = 7(x) is a scalar function, 0 = 0;(x)y’ is an 1-form on M, ' = a'™,,

_ _ I (O) _ 1 " ! 2 "
ki =11(0), ko = W,ks = 502(0) [3Q (0)IT'(0) — 6T17(0) — Q(0)IT""(0)].
and
_ ¢ _ (97 +9¢")
C=G=s0) T WG-se)

In [4], Cheng-Shen studied the class of («, 3)-metrics of non-Randers type ¢ # t1v/1 + tos?+
t3s. with isotropic S-curvature and obtained the following.

Theorem 2.3([3]) Let F = a¢(s),s = g be a non-Riemannian (a, B)-metric on a manifold

and b = |||Bz|||a- Suppose that ¢ # t1v/1 + tas? + tss for any constants t1 > 0,t2 and ts3. Then

F is of isotropic S-curvature S = (n+ 1)cF if and only if one of the following assertions holds
(1) B Satisfies

Tij = E(bzaij — bibj), S5 = O, (21)

where € = e(x) is a scalar function, and ¢ = c(x) satisfies

PA?
b =-2 Dk———> 2.2
(n+ D= (22)
where k is a real constant. In this case, S = (n+ 1)cF with ¢ = ke;
(2) B satisfies
Tij = 0, Sij = 0 (23)

In this case, S = 0, regardless of the choice of a particular ¢.
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§3. Characterization of Locally Dually Flat Finsler (a, ) Metric

Theorem 3.1 Let F=a+ [+ %2 + 2—: be a special Finsler («, 3) metric on a manifold M of
dimension n > 3.Then the necessary and sufficient conditions for F to be locally dually flat on

M are the following:
1
(1) S0 — 5(601 - 0bl);
2 2 1
(2) ro0 = 308+ |7+ 2 (V7 — ob') | o® + 5(25 — 300%)76%;
1 1
(3) G = 5[20 + 2578)y" + < (6'7")a® + 5757
where T = 7(z) is a scalar function, 0 = O,y* is an 1-form on M.

2 3
Proof For a Finsler metric F = a + 3 + ﬁ— + 6—2 we obtain k1 = 3, ks = 9, k3 = 10, and
a o«

p=1+s+5+5,¢ =1+2s+35%¢ =2+6s,¢ =6,

34 125+ 1852 + 205> + 135

= 1+5—2s83 —3s% — 355 — 26’
o) = 3, M©0)=9, I (0)=18, I (0)=102.
1+2s+3s> 24 8s+8s?+8s%+6s!
@ = oo T T Ty
o = —8(1 + 85+ 9s% + 155% + 9s* + 65° + 35°)

(—1 + 52 + 243)3
Q) = 1, Q=2 Q'(0)=8, Q"(0) =24

By using the above values in Lemma 2.1, we get
[s(ks = ks*) (66 — 5 = 50¢") = (¢ + 60") + k1(¢ — s¢/)] =0 and 7 =0.

Then, finally, by substituting k1, ko and k3 in Lemma 2.1, we infer the claim.
Now, let ¢ = ¢(s) be a positive C* function on (—bg, by). For a number b € [0, by], let

®=—(Q—sQ)(nA +1+5Q) - (b* —s*)(1 +Q)Q", (3.1)
where A = 1+ sQ + (b* — s?)Q’. This implies that

B[l — 3s? — 85 + 2b%(6 + 2s)]

A p—
(—1+4 s% 4 2s3)2

Then, the equation (3.1) can be written as follows:
©=—(Q-sQ)n+ 1A+ (" —s){(Q-5Q)Q — (1+sQ)Q"}.

By using Theorem 2.3, now we will consider a locally dually flat («, 5)-metric with isotropic
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S-curvature.

Theorem 3.2 Let F = a+ 3+ %2 + 2—: be a locally dually flat non-Randers type («, 3)-metric
on a manifold M of dimension n > 3. Suppose that F is of isotropic S curvature S = (n+1)cF,
where ¢ = c(x) a scalar function is on M. Then F is a locally projectively flat in adapted

coordinate system and G = 0.

Proof Let G* = G'(z,y) and GL = @L(:z:, y) denote the coefficients of F and « respectively,
in the same coordinate system. By definition, we have

G'=G, + Py + Q' (3.2)
where
P =a~'0 = 2Qas, + o, (3.3)
Q" = aQs;, + ¥ — 2Qaso + roob’, (3.4)
o_ 08 —5(6¢ +8'0) _ —l+s+125+205° + 215" + 357
C20((¢ —s¢) + (b2 — s2)¢")  20[—1+ 252 + 353 — 2b2(1 + 2s)]
1 ¢’ 1+ 3s

V=3 (6 —s¢/) + (b2 —s2)¢") 1— 352 — 855+ b2(2 + 63)

First, we suppose that case (i) of Theorem 2.3 holds. It is remarkable that, for a special

Finsler (a, 8) metric, we have

B[l — 3s% — 853 + 2b%(6 + 2s)]
(“1+ 2 +25%)2

A:

It follows that (=1 + s% + 2s%)2A is a polynomial in s of degree 3. On the other hand we
have

@21 —3s% — 85 + 20%(6 + 25))?

A? 3.5
¢ (—1+s2+253)4 (3.5)

Hence, if case (2) of Theorem (2.3) holds, then substituting (3.5) we obtain that
(1? — %) (=1 + 82 +25%)1D = —2(n + 1)k¢?[1 — 35% — 853 + 2b%(6 + 25)]%. (3.6)

It follows that (b? — s%)(—1 + s% + 253)*® is not a polynomial in s (if k = 0, then by
considering the Cartan torsion equation, we get a contradiction). Then, we put
A

2 _
oA%= (—1+ 52+ 2s3)%°

where

A = ¢2[1 — 352 — 855 + 2b%(6 + 25)]".

By assumption, F is a non-Randers type metric. Thus A is not a polynomial in s, and then
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(b? — 52)(—1 + 5% + 25%)*® is not a polynomial in s. Now, let us consider another form of ®

®=—(Q-sQ)(n+ 1A+ (" —s){(Q-sQ)Q — (1+5Q)Q"},

where 5 5 . s
;o (1—6s% — 125 — 15s* — 12
Q-0 = (1—06s s 5s s2)
(—1 + 52 + 253)2
Then,
-1
o = -{®[1 — 155 — 385° — 81s* — 108s° — 335° — 65"

(=14 s%2 4 2s3)

+n(—1—9s? — 20s% 4 35" 4 725 + 1415° + 15657 + 965°)

+2b%(4(1 + 35 + 952 + 155° 4 95* 4 65° 4 35%)

—n(—1—3s + 65> + 305> + 5151 + 57s° + 365%))]}. (3.7)

From equations (3.6) and (3.7), the relation (b — s2)(—1 + s2 + 25%)%® is a polynomial in
s and b of degree 8 and 4 respectively. The coeflicient of s8 is not equal to zero. Hence it is
impossible that® = 0. Therefore, we can conclude that equation (2.2) does not hold. So, the
case (ii) of Theorem 2.3 holds. In this case, we have

Too = O,Sj =0.

In Theorem 3.1(2), by taking rop = 0, we obtain (3.8)

2 1
T3 (B’ — o) | ® = 38[-20 - (25 + 306%)37] . (3.8)
Since o? is an irreducible polynomial of ¢, equation (3.8) reduces to the following
2 2 m
T+ g(b T —bnt™) =0, (3.9)
2 1 9
§0 + 5(25 +300%) 8T =0, (3.10)
where .
6= —5(25 + 300%) 3. (3.11)
Then, Theorem 3.1(1) yields
1

0= 3027 — Bbpo™)

This implies
(b1 — Bb,0™) =0

From (3.8), (3.9) and (3.11), we obtain

6 = —%(25 + 3002) 3. (3.12)
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From equations (3.9) and (3.12), it follows that 7 = 0 and substituting 7 = 0 in equation
(3.12), we get # = 0. Thus finally (1), (2) and (3) reduce to the following

s;;=0, GL =0, ro=0.
Since so = roo = 0, then equations (3.3) and (3.4) reduce to
P=0 and Q' =0.
Then the relation (3.2) becomes G, = 0, which completes the proof. O
Theorem 3.3 Let F=a+ 3+ %2 + g—z be a non-Riemannian metric on n-dimensional n > 3
manifold M. Then F is locally dually flat with isotropic S-curvature. Moreover, S = (n+ 1)cF

if and only if the structure is locally Minkowskian.

2 3
Proof From Theorem 3.2 we have that F' = a+ (§+ 6— + 6—2 is dually flat and projectively
o, o«

flat in any adapted coordinate system. By Lemma 2.1, we infer
For = CFFy.

Hence the spray coefficients G* = Py’ are given by P = %CF. Since G* = 0, then P = 0,
and hence C' = 0. This implies that F,» and then F is a locally Minkowskian metric in the

adapted coordinate system. a

84. Conclusions

The authors S. I. Amari and H. Nagaoka ([2]) introduced the notion of dually flat Riemannian
metrics, while studying information geometry on Riemannian manifolds. Information geometry
emerged from investigating the geometrical structure of a family of probability distributions and
was successfully applied to various areas, including statistical inference, control system theo-
rem and multi-terminal information theorem. As known, Finsler geometry is just Riemannian
geometry without the quadratic restriction. Therefore, it is natural to extend the construction
of locally dually flat metrics to Finsler geometry. In Finsler geometry, Z.Shen [7] extended the
notion of locally dually flat metric in Finsler information geometry, which plays a very impor-
tant role in studying many applications in Finsler information structures. In this article, we
study and characterize the locally dually flat a special («, ) metric F'=a+ 3+ %2 + g—z with

isotropic S-curvature which is not Riemannian.
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81. Introduction

Grobner bases and Grobner-Shirshov bases were invented independently by A.I. Shirshov for
ideals of free (commutative, anti-commutative) non-associative algebras [33, 35] (see also [9,
10]) , free Lie algebras [34, 35] and implicitly free associative algebras [34, 35] (see also [3, 4]),
by H. Hironaka [30] for ideals of the power series algebras (both formal and convergent), and
by B. Buchberger [20] for ideals of the polynomial algebras.

Grobner bases and Grobner-Shirshov bases theories have been proved to be very useful in
different branches of mathematics, including commutative algebra and combinatorial algebra,
see, for example, the books [1, 19, 21, 22, 26, 28], the papers [2, 3, 4], and the surveys [5, 6, 14,
16, 17, 18].

Up to now, different versions of Composition-Diamond lemma are known for the following
classes of algebras apart those mentioned above: Lie p-algebras [32], associative conformal
algebras [15], modules [25, 31] (see also [24]), right-symmetric algebras [8], dialgebras [11],
associative algebras with multiple operators [13], matabelian Lie algebras [23], Rota-Baxter
algebras [7], semirings [12], integro-differential algebras [29], and so on.

Let k be a field, A a non-associative algebra over k. We call A a left-commutative al-
gebra over k, if A satisfies the following identity: xz(yz) = y(zz), x,y,z € A. The variety
of Novikov algebras and the variety of dual Leibniz algebras are subvarieties of the variety of

left-commutative algebras. Free left-commutative algebras were firstly studied by A. Dzhu-
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No0.2014A030310087, 2014A030310119 and 2016A030310099, the Foundation for Distinguished Young Teachers
in Higher Education of Guangdong No.YQ2015155, and the Research Fund for the Doctoral Program of Huizhou
University No.C513.0210, C513.0209.
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madil’daev and C. Lofwall [27]. They constructed a monomial basis for free left-commutative
algebras. In this paper, we establish Grobner-Shirshov bases theory for the right ideals of left-
commutative algebras. Using this theory, we prove the decidability of the membership problems

for the right ideals of free left-commutative algebras.

82. Free Left-Commutative Algebras

Let X be a well ordered set. Each letter x; € X is called a non-associative word of degree 1.
Suppose that u is a non-associative word of degree m and v is a non-associative word of degree
n. Then (uv) is called a non-associative word of degree m + n. Denote by d(u) the degree of

the non-associative word u.

Let u,v € X** be non-associative words. Then we say that u > v if d(u) > d(v). If
du) = d(v) > 2 and v = (uyuz),v = (v1v2), then we say that u > v if either ugs > vy or
up = vy and u; > v;. This ordering is called non-associative degree inverse lexicographic
ordering. Unless otherwise stated, the non-associative degree inverse lexicographic ordering is

used throughout this paper.

Definition 2.1 FEach letter z; € X is called a regular word of degree 1. Suppose that u = (vw)
is a non-associative word of degree m,m > 1. Then u = (vw) is called a reqular word of degree

m if it satisfies the following conditions:

(S1) both v and w are regular words, and

(S2) if w = (wiwe), then v > w;.

Let k be a field, N(X) the set of all regular words on X, kN (X) the k-linear space spanned
by N(X). Let u,v € N(X). Then we define a product «-v on kN (X) by the following way: if
v=umx; € X, then u-v:= (uz;); if v = (v1v2) and u > vy, then u - v := (u(v1v2)); if v = (viv2)

and u < vy, then u - v := (v1(u - v2)).

Theorem 2.2([27]) Let LC(X) be the free left-commutative algebra generated by X. Then the
algebra kN (X) is isomorphic to LC(X).

According to Theorem 2.2, each non-zero element f in LC(X) can be uniquely presented
as

f=aiu; + asus + ... + A,

where o; € k, u; € N(X) for all ¢, ay # 0, uqz > ug > ... > u,,. Here, the regular word u; is
called the leading term of f, denoted by f and a; the leading coefficient of f, denoted by «a Iz

If af =1, then f is called a monic polynomial.

For every f € LC(X) denote by Ly the operator of left multiplication by f acting on
LC(X), i.e., Ly(g) = fg for all g € LC(X). In particular, if fi1, fa, -+, fm,9 € LC(X), then

Lfm e 'LfQLfl (g) = (fm( o (fZ(flg)) o ))
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Lemma 2.3([27]) Let u € N(X) be a reqular word. Then u can be uniquely presented as
w= Ly, ... Ly, (z;),
where z; € X, uy, > ... > ui,uj € N(X),1<j<n,n>0.

Lemma 2.4 Let u,v € N(X) be reqular words and v = L, ... Ly, (z;), where n > 1,2, € X.
Then
W+ =Ly, Ly LyLy, ;- Ly (),

where vy, > - >V > US> Vi1 > ... > VL.

Proof Let us use induction onn. If n =1 and u > vy, then u-v = L, Ly, (x;). If n =1 and
u < vy, then u-v = Ly, L, (x;). Suppose that n > 1. If u > v, then u-v = L, Ly, -+ Ly, (2;). If
u < Uy, then u-v = v, (u- Ly, , -+ Ly, (2;)). By the inductive hypothesis, w- Ly, , -+ Ly, (x;) =
Ly, -+ Ly, LyLy, - Ly, (z;), where v,,_1 > -+ > vy >u > w41 > -+ > v1. Therefore,

W+ =Ly, Ly LyLy, ;- Ly (),
where v, > - > vy > U > Vg >0 > V7. O

Lemma 2.5(]27]) If u,v,w € N(X) and u > v, then u-w > v-w,w - u > w - v.

From Lemma 2.5, it follows that

Corollary 2.6 If f,g € LC(X), then (f-g) = (f-7).

83. Composition-Diamond Lemma for Right Ideals of Free
Left-Commutative Algebras

Definition 3.1 Let S C LC(X) be a set of monic polynomials. Each polynomial s € S is called
an S-word of s-length one. Suppose that (u)s is an S-word of s-length m and v is a regular

word of degree n. Then (u)s - v is an S-word of s-length m + n.

Definition 3.2 Let S C LC(X) be a set of monic polynomials. Each polynomial s € S is
called a normal S-word of s-length one. Suppose that (u)s is a normal S-word of s-length m
and z; € X,v; € N(X),1 < j <n,0<n. Then Ly, - Ly, Ly Ly, , - Ly, (x;) is called a

normal S-word of s-length m + 1 + Ej dj) if v, > - > v > (W)s > vmg > -+ > v1. We
denote (u)s by [u]s if (u)s is a normal S-word.

Lemma 3.3 For each S-word (u)s, there exists a normal S-word [v]s such that (u)s = [v]s.

Proof Suppose that the s-length of (u)s is m. Let us use induction on m. If m = 1, then
(u)s = s and the lemma holds clearly. Suppose that (u)s = (v)s - w, where w € N(X) and (v)s
is an S-word with s-length less than m. By the induction hypothesis, these exists a normal

S-word [v']s such that (v)s = [v']s. If w = ; € X, then the lemma holds clearly. Let us assume
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that w = Ly, -+ Ly, (%;), where x; € X, w; > -+ > wy,w; € N(X),1 <j <1I,1<I. Then by

Lemma 2.4 we have

(u)s = (v)s - w = [v/]s W= Loy, - 'Lth[’Ul]stt—l oo Ly (20),

where w; > -+ > wy > [v]s > wg—1 > -+ > wy. This completes our proof. |

From Corollary 2.6, it follows that [u]s = [u]s.

Definition 3.4 Let f,g be monic polynomials in LC(X). If there exists a normal g-word [u],
such that f = m, then the polynomial f — [u]y is called a composition of inclusion of f and g,
and denoted by (f,g) ;-

Let S be a given nonempty subset of LC(X). The composition of inclusion (f, g) is said
to be trivial modulo (S, f) if

(f5 g)f = Zai[ui]siv

where a; € k, s; € S, [ui]s, are normal S-words and [u]s, < f. If this is the case, then we

i

write

(f,9)F =0 mod(S, f).

In general, for any regular word w and f,g € LC(X), we write

f=g mod(S,w)

which means that f — g = > a;[ws,, where ay; € k, s; € S and [u;]s, < w.

Definition 3.5 Let S C LC(X) be a nonempty set of monic polynomials and Id,.(S) the right
ideal of LC(X), generated by S. Then the set S is called a Grébner-Shirshov basis for 1d,(S)

if any composition of inclusion in S is trivial modulo S.

Lemma 3.6 Let [u1]s,, [u2]s, be normal S-words. If S is a Grobner-Shirshov basis for Id,(S)

and w = [uq]s, = [usls,, then

[u1]s, = [uals, mod(S,w).

Proof 1If [u1]s, = s1 or [us]s, = S2, then the lemma holds since S is a Grobner-Shirshov
basis for Id,(S).
Suppose that
[u1]s, = Ly, -+ Ly, Ly, Lo,y Lo, (x4),

[u2]52 = Ly, - quL[w]wquq o Ly, (xj)a

where v; > -+ > v, > [V]s, > vp1 > - > v and Wy, > - > Wy > (W], > Weo1 > -0 > Wi
From [ui]s, = [u2]s, and Lemma 2.3, it follows that z; = z;,! = m and either p = ¢,v1 =
wy, vy = wa, -, U = wy, [V]s; = [w]s, or p # q,(Here without loss of generality we may assume

p > q)7 V1 = W1,02 = W2, ,Vq—-1 = Wg—-1,Vq = [w]527vq+1 = Wgq, " ,Up—1 = wp—?u[v]sl =
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Wp—1,Vp = Wp, ",V = Wj.

pr =(q,V] = W1,V2 = W2, -,V = W, [U]Sl = [w]827 then
[u1]s, — [u2s, = Ly, --- L'UpL([U]sl_[w]sg)L'Upfl woe Ly, (24).

By induction on w, [v]s, = [w]s, mod(S, [v]s,)). From Lemma 3.3, it follows that [u1]s, =
[ug]s, mod(S,w).

SILpOSG that p > q,v1 = w1,v9 = Wa, "+ , Vg1 = Wy—1,Vq = [W]sy, Vg1 = We, "+ ,Vp—1 =
wy_a, [U]s, = Wp_1,Vp = wp, -+ ,v; = w;. Then
[ur]s, — [uals, = Loy -+ Ly L)y, Loy Log g Lvg Ly -+ Loy (23)
— Ly, -+ Lo, Ly, Lo,y -+ Logyy L, Loy - - Loy (24)
Lo, Loy Loy, Loy oy - Logya Lw oy Log -y -+ Loy ()
Ly Ly Loy Ly s Loy L Ly Loy (1)
= Lo Loy Ll —wp) Log 1+ Loy Lwy Loy -+ Loy (24)
Loy Loy L), Loy -+ Log iy L]y —vg) Log o =+ Loy ()

Since [v]s, — wp—1, [W]s, — Vg < w, by Lemmas 2.5 and 3.3, we conclude that
[u1]s, = [u2]s, mod(S,w).

This completes our proof. O

Theorem 3.7 Let S C LC(X) be a nonempty set of monic polynomials, N(X) the set of all
regular words on X and < the non-associative degree inverse lexicographic ordering on N(X).
Let 1d,.(S) be the right ideal of LC(X) generated by S. Then the following statements are

equivalent:

(i) S is a Grobner-Shirshov basis for Id,(S);

(ii) f € Id.(S) = f = [u]s for some s € S , where [u]s is a normal S-word;

(15i) f € Id.(S) = f = aq[u1]s, + aalug]s, + -+, where oy € k, [u1]s, > [uzls, > -+, and
[u;]s; are normal S-words.

Proof (i) = (it). Let S be a Grobner-Shirshov basis and 0 # f € Id,(S). We may

assume, by Lemma 3.3, that

where a; € k, and [u;]s, are normal S-words. Let

k3

Wi = [Wls,, W1 =W =" =W > W1 > - .

We will use the induction on [ and w; to prove that f = [u], for some normal S-word [u],.
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If | = 1, then f = [u1]s, and hence the statement holds. Assume that [ > 2. Then

ar[uls, + aslusls, = (a1 + a2)ur]s, — aa([uals, — [uzls,)

and by Lemma 3.6, we have

[uls, = [uzls, mod(S, [wi]).

Thus, if a1 + a2 # 0 or [ > 2, the result follows from the induction on [. For the case that
a1 + as = 0 and [ = 2, we shall use induction on w; and then the result follows.

(i) = (iii). Assume that (ii) and 0 # f € Id,(S). Let f = aif + ---. Then, by (ii),
f = [u1]s,. Therefore,

fi=f—aifwls,, fi <[, f1€1d.(S).

Now, by using induction on f, we have (4ii).

(iii) = (7). Suppose that (f, g); = f—[u], is a composition of inclusion of f and g, f,g € S.
It is clear that (f,g)f € Id,(S). Then, by (iii), we have (f,g)f = ai[ui]s, + aalua]s, +---,
where a; € k, f > (f,9)7 = [u1]s, > [ua]s, > ---. This completes the proof. O

Theorem 3.8 The membership problems for the right ideals of free left-commutative algebras

are decidable.

Proof Let X be a finite set and N(X) all regular words on X. Let

T = {(u17u25"' aul>|ui S N(X),Ul ZUQ Z Z Ul,l S l}
For (u,ug, - ,up), (v1,v2, -+ ,v4) € T, we define (u,ug, - ,up) > (v1,ve,- - ,vq) if either
p>gqorp=qand (ui,us, - ,up) > (v1,v2,- - ,vq) lexicographically. Clearly, this ordering is

a well ordering on T'.

Let S = {fi,...,fm} € LC(X),1 < m. Let us assume that f; > fo > --- > f..
Then we set ¥(S) = (f1, f2, -+, fm). If there exists a composition of inclusion (f;, fi)g; of
fi and f;, i < j, then we replace f; by (f;, f;)7; and then we obtain a new set S;. Clearly,
Id,(S) = Id,(S1) and 9(S) > ¢(S1). Since the ordering on 7' is a well ordering, we may obtain
a finite Grobner-Shirshov basis S, for the right ideal Id,.(S) of LC(X).

Now, we show that the membership problem for the right ideal Id,.(S) is decidable. We
may assume, without loss of generality, that S is a finite Grobner-Shirshov basis for the right
ideal Id,(S). For an element g € LC(X), if there is no normal S-word [u]y, such that g = [u]y,,
then by Theorem 3.7 we may conclude that g ¢ Id,(S). Otherwise, we let g1 = g — [u],.
Clearly, g € Id,.(S) if and only if g1 € Id,(S). Since g1 < g, we may complete the proof of this

theorem by the induction on g. a
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81. Introduction

A Finsler metric F(x, y) on an n-dimensional manifold M™ is called an («a, 8)-metric ([4]) F(x,y),
if F is positively homogeneous function of o and 3 of degree one, where o = a;;(z)y'y’ is a
Riemannian metric and 8 = b;(z)y’ is a 1-form on M™. The (a, 3)-metrics form an important
class of Finsler metrics appearing iteratively in formulating physics, mechanics, Seismology,
Biology, control theory, etc ([1], [6]). There are several interesting curvatures in Finsler geometry
(2], [5]), among them two important curvatures are Riemann curvature and Ricci curvature.

Riemannian metrics on a manifold are quadratic metrics, while Finsler metrics are those
without restriction on the quadratic property. The Riemannian curvature in Riemannian ge-
ometry can be extended to Finsler metrics as a family of linear transformations on the tangent
spaces. The Ricci curvature plays an important role in the geometry of Finsler manifolds and
is defined as the trace of the Riemannian curvature on each tangent space.

Consider the Finsler space F™ = (M", F) that is equipped with the special (a, §)-metric
2

F=a+ef+k— (e #0, k #0 are constants), where o = a;;(x)y'y’ is a Riemannian metric
a

1Received April 27, 2016, Accepted November 10, 2016.
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and 3 = b;(z)y’ is a 1-form on an n-dimensional manifold M™. Then the space R" = (M", )
is called the associated Riemannian space with F = (M™, F). The covariant differentiation
with respect to the Levi Civita connection 7}, (z) of R™ is denoted by (:). We put @ = (a;;)~"

The main purpose of the current paper is to investigate the curvature properties of the
2

special (a, 8)-metric o + €5 + k— (e,k # 0). The paper is organized as follows: Starting
@
with literature survey in section one, we find the Riemann curvature and Ricci curvature of
2
the Finsler space with special («, 3)- metric « + €6 + k% in section two (see Theorem 2.1).
In section three, we obtain the necessary and sufficient conditions for a Finsler space with

(c, B)-metric to be locally projectively flat (see Theorem 3.1 ).

62

§2. Riemann curvature and Ricci curvature of special («, §)-metric o + ¢ + k—
@

Let F be a Finsler metric on an n-dimensional manifold M and G* be the geodesic coefficient
of F, which is defined by

G = 20 I g™ — (2], 1)

For any z € M and y € T, M\ {0}, the Riemann curvature R, = R}, 22 @ dz™ : T,M™ —
T,M™ is defined by

, oG" 092Gt 0*Gt oG OG™
Rl e 2— I — 2Gm — .
m ox™ 8xm8ymy + Aymoy™  Oy™ dy™

(2)

The Ricci curvature is the trace of the Riemann curvature, and the Ricci scalar is defined
by
. ; 1 .
Ric=R;, R= me' (3)
By definition, an (a, 8)-metric on M is expressed in the form F = a¢(s),s = g, where
a = +/a;j(x)y'y™ is a positive definite Riemannian metric, 8 = b;(z)y’ is a 1-form. It is known

that («, §)-metric with [|f;]la < bo is a Finsler metric if and only if ¢ = ¢(s) is a positive

smooth function on an open interval (—by, by) satisfying the following conditions:
p(s) — s¢' + (b* — )¢ (s) >0, V |s| <b < by. (4)
For a special (a, §)-metric a + €5 + k%, we have

B) = (1 +es+hs?); 5= 2. (5)
Let G'(z,y) and G (x,y) denote the spray coefficients of ' and « respectively. To express

formula for the spray coefficients G* of F in terms of a and /3, we need to introduce some
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notations. Let b;.; be a covariant derivative of b; with respect to y7. Denote

1 1

rij = 5y + 05, sy = 5(big; — byja),
2 2

Sj— = aihshj, S5 = bisj- = Sijbi, r; = Tijbi,

ro =1y, So=s;y’, Too =i Y'Yy’ .

Lemma 2.1([3]) For an («, 8)-metric F = ad(s), s = g, the geodesic coefficients G are
given by

G' =G, + aQsh + O(—2aQso + roo)ygZ + ¢(—2aQso + roo) (b° — yEZ)a (6)
where
B ¢
Q - QI) _ ng)/’
o (6~ 56)0
20((¢p — s¢') + (b2 — s2)¢"’
\Ij B (b//

2((¢ — 5¢/) + (b° — 5%))9"

Here b' = a'b;, and b* = a"b;b; = b;b7.

Lemma 2.2 For a special (o, 3)-metric F = a+ €8 + k%z, the geodesic coefficients G* are
given by

i i (€ +2ks)
¢ = GatagTas
(€ + 2ks — eks? — 2k?s?) [ (e + 2ks)
— 2 S
2(1 + 2kb? — 3ks?)(1 + es + ks?) 1— ks ?

y’ k [ (€ + 2ks) } ;Y
¥y -2 p— L 7
o "1 R kst L YT —ks? so+ 700 (" = ) (7)

+T00:|
Proof By a direct computation, we get (7) from (6) O

Theorem 2.1 For a Finsler space with special (o, 3)- metric F = o + €8 + k%z, the Ricci
curvature of F is given by

Ric = Ric+T, (8)

where Ric(= ®Ric) denotes the Ricci curvature of o, and

4kFa? 2 2k
T = @ — kP ]?52)2 50550 + o T 1) ciza—+k626) 50+
2(ea? + 2kafB){eat — eka?B? + 2ka’ B — 2k*a 3 + 2ska®F} m
+ (a? —kp2)3 om0

—a? (6042 + 2kaﬁ)2 sMgl
(a2 _ k52)2 Jj °m
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Proof Consider the Finsler space with special («, 3)- metric F = o + €8 + k%z on an
n-dimensional manifold M™. From Lemma 2.2, the geodesic coefficients G* of F are related to

the coefficients G?, of a by

G'=Gi + Py + T, (9)
where
— 2k + 2k(1 — — 2k)ks? — 2k2s3 2k

TN .

2a(1 4 2kb? — 3ks?)(1 + es + ks?) 1—ks?

; ale + 2ks) k —2a(e + 2ks)sg ;
T — i [ I3 10
T—ks? O TromZ—30s2l  1—ksz (10)

In this section, we assume that g is a killing form of constant length i. e., 3 satisfies

ri; =0, and bbj., =0, (11)
Equation (11) implies that
Sij = bij, 8 = bisij =0, blsz =blsa’" = —bls;rad" = 0. (12)
Thus P = 0 and (9) reduces to
G'=Gl+ T, (13)
where  ale+2ks)
T=— e (14)

Now from (2) and (13), we obtain ([7])

Ry, =Ry, + 205, —y' T}, =TT, +21°T} (15)
where Tl] = g—gj. Thus the Ricci curvature of F is related to the Ricci curvature of a by
Ric = Ric+ 217, — T}y, — T7T4, + 27977, (16)
where “: 7and “. ”denotes the horizontal covariant derivative and vertical covariant derivative
with respect to the Berwald connection determined by G* respectively.
Note that
Om =0, Ym =0, Bun =Tom + Som, b:2m =2(rm + Sm), bfm = T:n + S:n
bi sy 50i (bjyi + biy;) Yiyi Qi
ST T ar ST SaiT g T ey
2 2 2
We have F,,, = (o + ¢3 + kﬁ—);m = (e + —ﬁ)bo;m and Fym = (a + €0+ kﬁ_)y”l = Im
@ @ @ @
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2
by, + kﬁ %m. Thus from (14), we have
!
2kFso;sy e+ 2ks)
" = -0 m.
J (1 —ks?)a i 1— ks2 04
2kFa? m (e +2kB) .

8044 (17)

(a2 — £B2)2 070 T g k52

Using bisy = 0, bish = 0, wish = 0 & yisj,; = 0, we obtain T, = 0 and T}%,37 = 0.

m

Consequently, we obtain the following

2 2 3
i (ea” 4+ 2kap) & 2kFa ;
TJTj,k = mskoso — Smsjﬂs%
(ea® +2kaf)? ; |  2ka®F(ea® +2kaf) ;
i = 505;-

I R e

(ea? + 2ka3)? 2ka® F(ea? + 2kaf3) m , olea® +2kaf)® .

TyT], = 2

(a? — k3?)2 Somsy — 28 (a? — k32)3 Som$So + (a% — k32)2 55 Sm-
Plugging these values into (16), we get
Ric = Ric+2T0 — /T2, — 7T, + 20977,
S 4kFa? a?(ea + 2kf) (ea? + 2ka3)?
ot (a% —kp2)2 %0 e ko0 (a2 — k22 "% ’
4ska’F(ea® + 2k 2 4 2kaf)? » 2 4+ 2kafB)?
s a(az(e_ak;;p af) somsT — a2 (5(22"; k—BO;)BQ) s's], + 2(6((22t kﬁoé—)@ Sm0S4"
2kFa? - (ea® + 2kafB)? kol F(ea? + 2kaf)
25— _sigs) +2—— L )50 —4s 5250, 18
(a2 — kp2)2 7070 (a® — kp2)2 079 (a2 — kB?)3 075 (18)
Since $,,0 = —Som and 39 = —sjo, equation (18) becomes
) S 4kFa3 m oa?(ea + 2kp) (ea? + 2ka3)? m
R'LC = RZC+ mswso + 2WSOJ + 2m50m50 +
4skal F(ea? + 2kaf3) s g o2 (ea? + 2kaf3)? g g
(a% — k32)3 0m=0 (a2 —kp2)2 7 °m
— 4kFa? a0 (ea+2kB) .
= Ric+ WSOJ‘SO + 2W80:j +
2(ea? + 2kafB){ea* — eka?B? + 2kaB — 2k%aB® + 2ska’F} m
(o — kp?)3 womto
2 2
o (ea® + 2kaf)® (19)

YT —kp)2 ™

This completes the proof. O
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§3. Projectively Flat (o, 8)-metric

A Finsler metric F = F(x,y) on an open subset U C R" is projectively flat [3] if and only if
Fzmyzym - sz =0. (20)

By (20), we have the following lemma ([8]).

Lemma 3.1 An (a, 8)- metric F = a¢(s), where s = g, 1s projectively flat on an open subset
U C R" if and only if
(ami0® = Ymuy))G™ + &> Qs10 4+ Yo —2aQso + o0 ) (o — sy;) = 0. (21)

ﬁQ

In this section, we consider the Finsler space with special («, 3)- metric F = a+ef+k—,
«

where €, k £ 0 are constants. We have
F=ad(s), ¢(s)=(1+es+ks?). (22)

Let by > 0 be the largest number such that

¢(s) = 5¢/(s) + (b° — s%)¢"(5) > 0, (|s| <b < bo). (23)
That is,
1+ 2kb?* — 4ks® >0, (|s| <b < by). (24)
62

Lemma 3.2 F = a+¢f + k— is a Finsler metric iff |6l < 1.

«

2
Proof f F=a+ €8+ kﬁ— is a Finsler metric, then
o
1+ 2kb?* — 4ks® >0, (|s| <b < by). (25)
Let s = b, then we get b < ! ¥V b < by. Let b — by, then by < = So |I8lla <1. No
= b, then w —, . — bg, then — o <1. Now,
’ g 5k 0 0 0 ok
i
1
s|<b< — 26
<< (26)
then
1+ 2kb?* — 4ks® >0, (|s| <b < by). (27)

2
Thus F =a+ €6+ kﬁ— is a Finsler metric. O
@
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By Lemma 2.2, the spray coeflicients are given by

0 - ea® + 2kaf
a2 —kp2
o — ea® — 2ka’ B — ekaf? — 2k%33
2{(1 4+ 2kb?)a? — 3k32}Ha? + e + kB2’
ka?
/(Z) =

(1 + 2kb%)a2 — 3kB%

Equation (21) is reduced to the following form:

(GmIOéQ — Yott)G™ + QB(M)SZO + a(( ko )

a? — k32 1+ 2kb2)a? — 3k32
[20( 2 4] (e~ Z1) =0, 28)

Lemma 3.3 If (4,102 — yny1)G™ = 0, then « is projectively flat.

«

Proof If (amia® — ymy)G™ = 0, then
amia® = Yy Gy,
then there is a n = n(x, y) such that y,,G™ = o7, we get
amiGy = Ny
Contracting with a’ yields G?, = ny?, and thus « is projectively flat. O

Theorem 3.1 A Finsler space with special (o, 3)-metric F = o+ €5 + k%z (where €, k # 0

are constants) is locally projectively flat iff

(1) B is parallel with respect to «;
(2) « is locally projectively flat, i. e., of constant curvature.

Proof Suppose that F is locally projectively flat. First, we rewrite (28) as a polynomial in
y® and a. This gives,

(ami0® = ymi) G [{(1 + 2k0%)0? = 3k} a2 — %} + 2hka B{(1 +
2kb?)a? — 3kB*}s10 + krooa®(a? — kB%)(bia® — Byi) — 4k*a’*Bso(bja® —
Byi) + a{ea4{(1 + 2kb?)a? — 3kB% ) s10 — 2ekatso(ba? — 5yl)} =0. (29)

or
U+aV =0, (30)
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where
U = (amo® = ym) Gir [{(1+ 2k6%)0® = 3k2Ha® — k3%}| + 2k’ B{(1 +
2kb?)a® — 3kB%*Ys10 + krooa®(a? — kB%)(bia® — By) — 4k*a’Bsg
(blO&2 - 6yl)7
and
Vo= ea{(1+2kb?)a? — 3kB}s10 — 2eka’tso (b’ — Byy).

Now, (30) is a polynomial in (y*), such that U and V are rational in y* and « is irrational.
Therefore, we must have
U=0andV =0, (31)

which implies that

(am10® — Ymy))G™ | {(1 + 2kb?) o — 3kB%*}{a? — k62}} +2ka’p{(1
+2kbH)a? — 3kB%}s10 + krooa® (o — kB%) (b — By;) — 4k*a’ Bso
(bie® — By) =0 (32)

and
ea*{(1+ 2kb?)a? — 3kB?}s19 — 2ekaso(bia® — Byi) = 0. (33)

From (30), considering only terms which do not contain 3. There exists a homogenous

polynomial V7 of degree seven in y® such that
{(1 + 2kb?)esiy — 2keblso}a7 = V. (34)
Since a? % o(modf3), we must have a function u' = u!(z) satisfying
(1 + 2kb%)esio — 2kebysg = u'p. (35)
Transvecting (35) by b;, we have
(1 + 2kb%)eso — 2keb®sy = ul Bbl. (36)

That is,
es; = u'bb;. (37)
Further transvecting by &’, we have u’b;b> = 0, which implies u‘b; = 0. Substituting this
equation into (36), we get so = 0. Now, from (32), by contracting with b, we get
(bno® = ym G [{(1+ 2k0%)0? = 3kF7Ha® — kG%}| + 2ka’B{(1 +
2kb?)a? — 3kB%}Yso + krooa? (o — kB%) (Va2 — 5%) — 4k?a* Bso (b — By;) = 0. (38)
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Since sp = 0, we get
(bm® — Yy B)G™ [ {(1 +2kb*)a? — 3kB*Ha? — kB%}| + krooa(a® — kB%) (b?a® — %) = 0. (39)

Contracting (39) by y™, we get
oo = 0. (40)

From (33), we get
S0 = 0. (41)

Then by (40) and Lemma 3.3, « is projectively flat. From (40) and (41), b;;; = 0, i. e., B is
parallel to .

Conversely, if [ is parallel with respect to « and « is locally projectively flat, then by
Lemma 3.3, we can easily see that F is locally projectively flat. a
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Abstract: A roman dominating function on a graph G is a function f : V(G) — {0, 1, 2}
satisfying the condition that every vertex v € V(G) for which f(v) = 0, is adjacent to at
least one vertex u with f(u) = 2. The weight of a roman dominating function f is the value

w(f) = > f(v). The minimum weight of a roman dominating function is called the roman
veV

domination number of G and is denoted by vr(G). A roman dominating function f is called
a nonsplit roman dominating function if the subgraph induced by the set {v : f(v) = 0}
is connected. The minimum weight of a nonsplit roman dominating function is called the
nonsplit roman domination number and is denoted by ynsr(G). In this paper, we initiate a

study of this parameter.

Key Words: Domination number, roman domination number and nonsplit roman domi-

nation number.
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§81. Introduction

The graph G = (V, F) we mean a finite, undirected, connected graph with neither loops nor
multiple edges. The order and size of G are denoted by n and m respectively. The degree of
a vertex u in G is the number of edges incident with « and is denoted by dg(u), simply d(u).
The minimum and maximum degree of a graph G is denoted by §(G) and A(G), respectively.
For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al 3, 4].

Let v € V. The open neighborhood and closed neighborhood of v are denoted by N (v)

and N[v] = N(v)U{v}. If S CV then N(S)= |J N(v) for all v € S and N[S] = N(S) U S.
veS
If S CV and u € S then the private neighbor set of u with respect to S is defined by

pnfu, S] = {v: NvJnS = {u}}. For any set S C V', the subgraph induced by S is the maximal
subgraph of G with vertex set S and is denoted by (S5).The vertex has degree one is called a
pendant vertex. A support is a vertex which is adjacent to a pendant vertex. A weak support
is a vertex which is adjacent to exactly one pendant vertex. A strong support is a vertex which
is adjacent to at least two pendant vertices. An unicyclic graph is a graph with exactly one
cycle. A graph without cycle is called acyclic graph and a connected acyclic graph is called
a tree. H(mjy,ma, -+ ,m,) denotes the graph obtained from the graph H by attaching m;

1Received January 31, 2016, Accepted August 23, 2016.
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pendant edges to the vertex v; € V(H),1 <14 < n. The graph Ks(mi,ms) is called bistar and
it is also denoted by B(m1,m2). H(Pm,, Py, -+ , Pm,, ) is the graph obtained from the graph
H by attaching an end vertex of P,,, to the vertex v; in H,1 < i < n. The clique number w(G)
is the maximum order of the complete subgraph of the graph G.

A subset S of V is called a dominating set of G if every vertex in V — §' is adjacent to at
least one vertex in S. The minimum cardinality of a dominating set is called the domination
number of G and is denoted by v(G). V.R.Kulli and B.Janakiram [5] introduced the concept of
nonsplit domination in graphs.Also T.Tamizh Chelvam and B.Jayaparsad [6] studied the same
concept in the name of the complementary connected domination in graphs. A dominating
set S is called a nonsplit dominating set of a graph G if the induced subgraph (V — S) is
connected. The minimum cardinality of a nonsplit dominating set of G is called the nonsplit
domination number of G' and is denoted by 7v,s(G). A dominating set(nonsplit dominating set)
of minimum cardinality is called y—set (yns—set) of G. E.J.Cockayne et.al [2] studied the
concept of roman domination first. A roman dominating function on a graph G is a function
f:V(G) — {0,1,2} satisfying the condition that every vertex v € V for which f(v) = 0 is
adjacent to at least one vertex u € V with f(v) = 2. The weight of a roman dominating function

is the value w(f) = > f(v). The minimum weight of a roman dominating function is called
veV
the roman dominating number of G and is denoted by vr(G). P.Roushini Leely Pushpam and

S.Padmapriea [6] introduced the concept of restrained roman domination in graphs. A roman
dominating function f is called a restrained roman dominating function if the subgraph induced
by the set {v : f(v) = 0} contains no isolated vertex. The minimum weight of a restrained
roman dominating function is called the restrained roman domination number of G and is
denoted by v, r(G). In this paper we introduce the concept of nonspilt roman domination and

initiate a study of the corresponding parameter.

Theorem 1.1 ([7]) Let G be a graph. Then v,s(G) =n — 1 if and only if G is a star.

82. Nonsplit Roman Domination Number

Definition 2.1 A roman dominating function f is called a nonsplit roman dominating function
if the subgraph induced by the set {v : f(v) = 0} is connected. The minimum weight of a nonsplit

roman dominating function is called the nonsplit roman domination number of G and is denoted

by Ynsr(G).

Remark 2.2 For a graph G, let f: V — {0,1,2} and let (Vp, V1, V2) be the ordered partion
of V induced by f, where V; = {v € V : f(v) = i}. Note that there exists an one to one
correspondence between the function f : V — {0, 1,2} and the ordered partition (Vy, V1, V2)
of V. Thus we will write f = (Vo, V1, Va).

A function f = (Vp, V1, V2) is a nonsplit roman dominating function if V5 € N(V2) and
the induced subgraph (Vp) is connected.The minimum weight of a nonsplit roman dominating
function of G is called the nonsplit roman domination number of G and is denoted by s (G).

We say that a function f = (Vp, Vi, V2) is a yps-—function if it is an nonsplit roman dominating
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function and w(f) = yns-(G). Also w(f) = |Vi| + 2|Va|.
A few nonsplit roman domination number of some standard graphs are listed in the fol-
lowing.
(1) Any nontrivial path P, Vnsr(Pn) = n;
(2) If n > 4 then v,5-(Cy) = n;
(3) If n > 2 then v, (K,,) = 2;
(4) Vnsr(Wn) = 2;
()
(6) Ynsr (K s) =4 where r, s > 2.

Theorem 2.3 For a graph G, Y,s5(G) < Ynsr (G) < 27,5(G).

Proof Let f = (Vo,V1,V2) be a v,s-—function. Then V5 U Vs is a nonsplit dominating
set of G. Hence v,s < |Vi UVa| = [Vi| + |Va| < [Vi| + 2|Va| = s Also, let S be any
Yns—set of G. Then f = (V —S,¢,5) is a nonsplit roman dominating function of G. Hence
Ynsr (G) < 2[S| = 27ms(G). -

Observation 2.4 For a nontrivial graph G,
(1)) Y(G) < 1s(G) < s (G);
(11) 2 < Ynsr (G) < n.

Remark 2.5 (i) For any connected graph G, v,s-(G) = 2 if and only if there exists a non
cut vertex v such that dg(v) = n — 1. Thus v, (G) = 2 if and only if G = H + K; for some
connected graph H.

(7i) For any connected spanning subgraph H of G, vsr(G) < Ynsr(H).

Theorem 2.6 If G contains a triangle then Vns-(G) < n — 1.

Proof Let v1,vq,v3 form a triangle in G. Then f = ({vy,v2}, V — {v1,v2,v3},{v3}) is a

nonsplit roman dominating function of G and hence ;5 (G) < n — 1. |

Theorem 2.7 Let v € V(G) such that dg(v) = A and (N(v)) be connected. Then s (G) <
n—A+1.

Proof Let us take f = (N(v),V — N[v],{v}). Then it is clear that f is a nonsplit roman
dominating function. Hence v, (G) < |V = N[]|+2=n—(A+1)+2=n—-A+1. O

Definition 2.8 Let f = (Vo,V1,Va) be a nonsplit roman dominating function and let u €
Vi, 0 <i < 2. The function [, is defined as follows:
Let V; and Vi, be the two sets in the ordered partition (Vy, Vi, Va) other than V;.
Vi—{u}, ifl=i
Vi=qViu{u}, ifl=j ,
Vi, ifl=k0<I<2
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Then the function f, = (Vy, V{,V3).
It is clear that for every u € V; there are two functions f,.

Definition 2.9 A nonsplit roman dominating function f = (Vo, V1, V2) is said to be a minimal
nonsplit roman dominating function if for every uw € V;,0 < i < 2 either w(f,) > w(f) or fy is

not a nonsplit roman dominating function.

We now proceed to obtain a characterization of minimal nonsplit roman dominating func-

tion.

Theorem 2.10 A nonsplit roman dominating function f = (Vo, V1, Va) is minimal if and only

if for each uw € Vi and v € Va the following conditions are true.

(1) N(u)NVy=¢ or N(u)NVa = ¢;
(73) There exists a vertex w € Vi such that N(w) NVz = {v}.

Proof Let f = (Vp,V4,V2) be a minimal nonsplit roman dominating function and let
u € Vi,v € Va. Suppose N(u)NVy # ¢ and N(u) NV # ¢. Then f, = (Vo U {u}, Vi —{u}, V2)
is a nonsplit roman dominating function with w(f,) = |Vi| — 1 + 2|V2| < w(f) which is a
contradiction. Hence either N(u) N Vp = ¢ or N(u) N Ve = ¢.

Suppose there is no vertex w € V; such that N(w) NV = {v}. Then f, = (Vp,V4 U
{v}, Vo — {v}) is a nonsplit roman dominating function with w(f,) = |Vi| + 1+ 2(|V2| - 1) =
[Vi| + 2|Va] — 1 < w(f) which is a contradiction. Hence for every v € V;, there exists a vertex
w € Vp such that N(w) N Vy = {v}. The converse is straightforward. O

Theorem 2.11 For a nontrivial graph G, Ynsr(G) + w(G) < n + 2 where w(G) is the clique

number of G.

Proof Let S be a set of vertices of G such that (S) is complete with |S| = w(G). Then
f=(S—{u},V—S,{u}) is a nonsplit roman dominating function of G. Hence v, (G) <
[V =S| +2=n—w(G@) +2. Thus 1,5 (G) + w(G) <n+2. O

Theorem 2.12 For a graph G, s (G) > 2n—m — 1.

Proof Let f = (Vo,V1,V2) be a y,s-—function. Since (Vp) is connected and every vertex

in Vj is adjacent to at least one vertex in Va, (Vo U V) contains at least 2|Vy| — 1 edges.
Case 1. (V) is connected.

Then (V7) contains at least |Vi| — 1 edges. Since G is connected there should be an edge
between a vertex of V7 and a vertex of Vy U Va. Hence there are at least |V;| edges other than
the edges in (Vo U V).

Case 2. (V}) is disconnected.

Let G1,Ga, -+ , G be the components of (V7). Since each G; contains at least |V (G;)| — 1
edges and since G is connected there exists an edge between a vertex of G; and a vertex of
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Vo U V. Hence there are at least Z(|V(G;)| — 1) + k (= |V1|) edges.
Hence m > 2[Vo| = 1+ [Vi| = 2(n — [Vo| = Vi[) = 1+ [Vi] = 2n — (2]V2| + W1[) — 1
2n — Ynsr(G) — 1. Hence vp,6-(G) > 2n —m — 1. O

Corollary 2.13 For a tree T, vpsr(T) = n.

Proof n > yps(T) > 2n— (n—1) — 1 = n. Hence v,,5,-(T) = n. O
Corollary 2.14 For an unicyclic graph G, n — 1 < 7,5-(G) < n.

Theorem 2.15 Let G be an unicyclic graph with cycle C' = (vy,va, -+ , Uk, v1). Then s (G) =
n — 1 if and only if one of the following is true.

(Z) C= Cg,'
(73) dg(v) > 3 for all v € V(H) where H is a connected subgraph of C' of order at least
k-3

Proof Let G be an unicyclic graph with cycle C = (v1,va, -+, v, v1). Let C = C3. Then
G contains a triangle and hence by Theorem 2.6, 7,4 (G) < n — 1 which gives v,,4-(G) =n — 1.

Suppose C' contains a connected subgraph H such that |[V(H)| > k — 3 and dg(v) > 3 for
all v € V(H). Tt is clear that H is either C or a path. Let P be a path in H of order k — 3. Let
P = (vi,v2,- - ,v5—3) and let u; € N(v;) —V(C),v; € V(P). Let X = {uy,uz, - ,up—3}, Vo =
V(P)U{vk,vp—2}, V1 = V(G)—(V(C)UX), Vo = XU{vk_1}. Then f = (Vy, V1, Va) is a nonsplit
roman dominating function of G. Thus v,s-(G) <n—(k+k—3)+2(k—3+1)=n—1and
hence Y- (G) =n — 1.

Conversely, let us assume v,5-(G) =n — 1. Let f = (Vp, V1, V2) be a 7,s-—function of G.
Suppose conditions (i) and (i7) given in the statement of the theorem are not true.

Let P = (v1,v9, -+ ,vx—3) be a path in C such that dg(v;) = 2 for some i,1 <i <k —3
and dg(vj) =2,k—2 < j <k.
Casel. i#landi#k—3

Then at least one vertex v in the subpath (v;—1,v;,v;41) with f(v) # 0 and at least two
vertices u and w in the subpath (vi_3, vk—2, Vk—1, Uk, v1) With f(u) # 0 and f(w) # 0 and hence
either (V) is the union of two distinct paths or Vj = ¢. Thus either (V4) is disconnected or

[Vo| = [V2] = 0. Hence f is not a nonsplit roman dominating function or 7,s. = n which is a

contradiction.
Case 2. i=1lori=k—-3

Let dg(v;) > 3,1 <i < k—2and dg(v;) = 2,k—3 < j < k. Then at least two vertices z and
y in {vg_3,Vk—2,05-1,0%},dc(z) # 0 and dg(y) # 0. Hence for every vertex v with f(v) = 2
there exists exactly one vertex u with f(u) = 0. Thus v,s-(G) = n which is a contradiction.
This proves the result. O

Now we characterize the lower bound in Theorem 2.3.

Theorem 2.16 Let G be a connected graph. Then Yns = Ynsr(G) if and only if G is a trivial
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graph.

Proof Let f = (Vp,V1,Va) be a v,s-—function of G. Then 7,5(G) < |[Vi| + [Vo] <
[Vi| + 2|Va| = Ynsr (G) which gives |Va| = 0. Then Vi = ¢ and hence Vi = V. Then v,5(G) =
Ynsr(G) = n which gives G is a trivial graph. O

Theorem 2.17 Let G be a nontrivial graph of order n. Then Vs (G) = vns(G) + 1 if and only
if there exists a vertex v € V(G) such that (N(v)) has a component of order n — y,s(G).

Proof Let v € V(G) such that (N(v)) has a component of order n — v,5(G). Let G1 be
the component of (N (v)) with [V(G1)| = n — s (G). Let Vo = {0}, V1 =V — (V(G1) U {v})
and Vo =V = V; — V5. Then V1 U Vs is a y,s—set of G and f = (Vp, Vi, Va) is a nonsplit roman
dominating function and hence v,,5-(G) < |Vi|4+2|Va| = n— (n — 1ns(G) + 1) + 2 = 7,5 (G) + 1.
Since G is nontrivial 7,5(G) + 1 < s (G) and hence Y, (G) = yns(G) + 1.

Conversely, let us assume vy,5-(G) = 7s(G)+1 and let f = (Vp, V1, Va) be a v, —function
of G. Then vps-(G) = |V1| + 2|Va| which gives v,s(G) + 1 = [Vi| + 2|Va|. Then |Vi| = v,s(G) +
1 2|Va.

Suppose V3| > 2. Since Vi U V4 is a nonsplit dominating set, v,s(G) < |Vi| + [Va| =
Tns(G) + 1 =2|Va| + |Va| = 1ns(G) + 1 — |Va| < vns(G) — 1 which is a contradiction. Hence
V| < 1.

If V5| = 0 then |Vo| = 0 and hence |Vi| = V. Thus 7,5-(G) = n and 7,5(G) = n— 1. Then
by theorem 1.1 G is a star. Let v be a pendant vertex of G and hence (N (v)) is a center vertex
of star G. Thus [N(v)| =1=n—(n—1) =n — v,5(G).

Suppose |[Va| = 1. Let Vo = {v} and let f = (Vp,V1,V2) be a 7,4 —function of G.
Thus Ynsr = |Vi| + 2. Then 7,5(G) + 1 — 2 = |V4| which gives |Vi| = 74,5(G) — 1. Hence
Vol =n— V1| = |Val =n — (Yns(G) — 1) — 1 =n — v,,5(G) then the result follows. O

Corollary 2.18 For any graph G, if Ynsr(G) = Yus(G) + 1 then diam(G) < 4 and rad(G) < 2.

Proof Let Ypsr(G) = Yns(G) + 1. Then there is a vertex v € V(G) such that (N(v)) has
a component of order n — v,5(G). Hence every vertex in V' — N[v] is adjacent to a vertex in
N (v).Thus diam(G) < 4 and rad(G) < 2. |

Corollary 2.19 If T is a tree then Vpsr(T) = Yus(T) + 1 if and only if T is a star.

Theorem 2.20 Let G be an unicyclic graph with the cycle C = (v1,v2, -+ ,vk,v1). Then
Ynsr(G) = Yns(G) + 1 if and only if G is isomorphic to C3(ni,n2,0).

Proof Let us assume s (G) = Yns(G) + 1. Then there is a vertex v € V(G) such that
(N(v)) has a component of order n — v,5(G). Let G1 be a component of (N(v)) such that
[V(G1)| = n — yns(G). If [V(G1)| > 3 then there is a path P(u1,u2,u3) in Gi. Then the
induced subgraph of the sets {v,u1,us} and {v,us,us} are cycles which is a contradiction.
Hence |V(G1)| = 2 and hence C = Cj5 so that C' = (v, v2,v3,v1). If dg(v;) > 3 for all 7 then
V —{wv1,v2,v3} is a nonsplit dominating set of G and hence 7,,5(G) < n—3 then 7,5, (G) < n—2

which is a contradiction. Hence dg(v;) = 2 for some i. Let dg(vs) = 2.
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Suppose there is a vertex x € V(G) — V(C) such that dg(x) > 2. Let v; € V(C') such
that d(C,z) = d(vy,x). Let (vi,z1,22, -, 2, x),7 > 1 be the shortest v; — z path. Then
V(G) — {v1,v2,21} is a nonsplit dominating set of G and hence 7,5(G) < n — 3 which is a

contradiction. Hence every vertex in V — V(C) is a pendant vertex which follows the result. 0

Theorem 2.21 Let G be a nontrivial graph of order n. Then Vnsr(G) = Yns(G) + 2 if and only
if

(1) every vertex v € V(G) such that (N(v)) has no component of order n — y,s(G);

(i) G has a vertex v such that (N (v)) has a component of order n — vy,s(G) — 1 or G has

two vertices u and v such that (N(u) U N(v)) has a component of order n — Yys.

Proof Let the graph G be satisfy the conditions (i) and (i7) in the statement of the theorem.
By condition (i) and Theorem 2.17, v,,5r-(G) > vs(G) +2. Suppose v € V(G) such that (N (v))
has a component G of order n — v,5(G) — 1. Then (V(G1),V — (V(G1) U{v}, {v}) is a nonsplit
roman dominating function of G and hence 7,5 (G) < n—(n—4ns(G) —14+1)+2 = 7,:(G) +2.
Hence Ypsr(G) = Yns + 2. Suppose G has two vertices u and v such that (N(u) U N(v)) has a
component of order n — 7,s(G). Let G2 be the component of (N(u) U N(v)) with [V (Gs)| =
n—Yns(G). Let Vo = {u,v}, V1 =V — (V(G2) U{u,v}) and Vo =V — V4 — Vo. = V(G2). Then
V1UVa is a yps—set of G and f = (Vp, V1, V) is a nonsplit roman dominating function and hence
Yusr(G) < Vi +2{Val = 11— (11— 30y (G) +2) + 4 = 70(G) +2 and hence sy (G) = s (G) +2.

Conversely, let us assume 7,5 (G) = Vns(G)+2 and let f = (Vy, V1, Va) be a 4,5, —function
of G. Then 7,5 (G) = |V1| 4 2|V2| which gives v,,5(G) + 2 = |Vi| 4+ 2|V2|. Then |V1| = v,.5(G) +
2~ 2|Va).

Suppose |V2| > 3. Since V; U V4 is a nonsplit dominating set, v,5(G) < |Vi| + [Va| =
Tns(G) + 2 = 2|Va| + |[Va| = yns(G) + 2 — |Va| < vns(G) — 1 which is a contradiction. Hence
Vol < 2.

If |Va] = 0 then |Vp| = 0 and hence |Vi| = V. Thus 7,5 (G) = n and 7,5(G) = n — 2.
Let S be a yps—set of G. Then (V — S) = Ky = ay. Suppose |S| = 1. Then G = C5 and
hence Y57 (G) = 2 and 74,5(G) = 1 which is a contradiction. Thus |S| > 2. Then S contains
two vertices u and v which dominates = and y. Thus G contains two vertices u and v such that
(N(u) UN(v)) contains a component of order n — 7,,5(G).

Suppose |Vo| = 1. Let Vo = {v}. Then v, = V1] 4+ 2. Thus v,5(G) + 2 — 2 = |V;| which
gives |V1| = 4ns(G). Then Vp contains n — v,5(G) — 1 vertices. Thus (N (v)) has a component
a component of order n — y,s — 1.

Suppose |Va| = 2. Let Vo = {u,v}. Then 7,5 = |Vi|+4. Thus v,s(G)+2—4 = |V;| which
gives |Vi| = v,5(G) — 2. Hence |Vp| = n — [Vi| — |Va| =1 — (Yns(G) — 2) — 2 = n — 4,,5(G) then
the result follows. |

Corollary 2.22 If T is a nontrivial tree then Ynsr(T) = Yns(T) + 2 if and only if T' has exactly

two support vertices.

Proof Let T be a tree with Y5 (T) = Yns(T) + 2. Then v,5(T) = n — 2. Let u and v be

the support vertices such that d(u,v) is maximum. Let P(u = uy,uz,- - ,ur = v) be the u — v
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path. Let u; be the vertex lie in both v — w and u — v paths such that ¢ is maximum. Then
V — {w;—1,u;,u;y1} is a nonsplit dominating set which is a contradiction. Hence T' contains

exactly two support vertices. The converse is obvious. O

Now we characterize the upper bound in Theorem 2.3.

Theorem 2.23 Let G be a graph. Then vpsr(G) = 27v,5(G) if and only if G has a vy sr— function
f = (‘/E),Vl,‘/g) with |V1| =0.

Proof Let f = (Vp,V1,Va2) be a y,e-—function and V4] = 0. Then V, is a nonsplit
dominating set of G. Suppose, there exists a nonsplit dominating set S of G such that |S| < |Vz].
Then g = (V—25, ¢, 5) is a nonsplit roman dominating function of G and hence 7,5, (G) < 2|5| <
2| V5| which is a contradiction. Hence V3 is a y,s—set of G. Hence y,5-(G) = 2|Va| = 279,,5(G).

Conversely we assume that 7,5 (G) = 29,5(G). Let S be y,s—set of G. Take V =
V-8V =¢,Vo =S Then f = (Vy, Vi, Vs) is a nonsplit roman donating function of G with
w(f) = 2|Va| = 2|S| = 2v,5(G). Hence f is a yps—function of G with [V4] = 0. O

Theorem 2.24 Let T be a nontrivial tree. Then Yns(T) = 2vns(T) if and only if T is

isomorphic to H o K1 for some tree H.

n

Proof Let T be a tree with v,5-(T) = 29,5(T"). Then ~,s(T) = 5" Let S be a ~,s—set of

n n
T. Then |S| = 5 (V —S) is connected and |V — S| = 3 It is clear that any vertex in S cannot
adjacent to two or more vertices in V' — §. If any two distinct vertices of S are adjacent to a
vertex in V' — S then at least a vertex in V' — S is not dominated by S. Hence T is isomorphic

to H o K; for some tree H. The converse is obvious. O

Since the graphs P, and Cjs are self complementary, the following result is obvious. Hence

we omit its proof.

Theorem 2.25 Let G be a graph such that both G and G are connected. Then Ynsr (G) +

Ynsr(G) < 2n and the bound is sharp.

Theorem 2.26 Let G be a graph such that G and G are connected and diam(G) > 5. Then

Tnsr (G) + Ynsr (G) <n+ 4.

Proof Let S = {u,v}, where d(u,v) = diam(G). Then f = (V — S,¢,5) is a nonsplit
roman dominating function of G so that 7,..(G) < 4 and hence the result follows. O

Remark 2.27 The bound given in Theorem 2.28 is sharp. The graph G = Ps has diameter 5,

Ynsr(G) = 6 and Y, (G) = 4. Thus Ynsr (G) + Ynsr (G) = 10 = n + 4.

Problem 2.28 Characterize graphs which attain the bounds given in Theorems 2.25 and 2.26.
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Abstract: All connected Cayley graphs over Abelian groups are Hamiltonian. However, for
Cayley graphs over non-Abelian groups, Chen and Quimpo prove in [2] that Cayley graphs
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81. Introduction

Let G be a finite group and S be a non-empty subset of G. The graph Cay(G,S) is defined
as the graph whose vertex set is G and whose edges are the pairs (x,y) such that sz = y for
some s € S and z # y. Such a graph is called the Cayley graph of G relative to S. The
definition of Cayley graphs of groups was introduced by Arthur Cayley in 1878 and the Cayley
graphs of groups have received serious attention since then.Finding Hamiltonian cycles in graphs
is a difficult problem,of interest in combinatorics, computer science and applications. In this

paper,we present a short survey of various results in that direction and make some observations.

§2. Preliminaries

In this section deals with the basic definitions of graph theory and group theory which are
needed in sequel. A graph (V) E) is said to be connected if there is a path between any two
vertices of (V, E). Every pair of arbitrary vertices in (V, E) can be joined by an edge,then it
is complete. A subgraph (U, F) of a graph (V, F) is said to be vertex induced subgraph if F
consists of all the edges of (V, F) joining pairs of vertices of U. A Hamiltonian path is a path
in (V, F) which goes through all the vertices in (V, E) exactly once. A hamiltonian cycle is a
closed Hamiltonian path.A graph is said to be hamiltonian if it contains a hamiltonian cycle.

Let G be a group. The orbit of an element = under G is usually denoted as Z and is defined

1Received July 12, 2016, Accepted November 10, 2016.
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as T = {gz/g € G}. Let z be a fixed element of G. The centralizer of an element z in G, Cg(z),
is the set of all elements in G that commute with z. In symbols, C(z) = {g € G/gzx = zg}.
The centre of a group is denoted as Z(G) and is defined as Z(G) = {g € G/gx = xg¥x € G}.
A group G acts on G by conjugation means gr = grg~! for all x € G. An element x € G is

called an involution if 2% = e, where e is the identity.

Theorem 2.1 Let G be a finite non-Abelian group and G act on G by conjugation. Then for
x € G, the induced subgraph with vertex set Cq(x) of the Cayley graph Cay(G, T) is hamiltonian,

provided there exist an element a € T, which generates Ca(x).

Proof Since a € T which generates Cg(z), we have Cg(z) = {a,a?a®,--- ,a"™ = e} and
a # e, where e is the identity. Let u € Cg(z). Then ux = zu for x € G. Since T is the
orbit of x € G and G act on G by conjugation, we can choose an element s € z such that
s = (ua)a(ua) .

1 1 1 1 1 _

Now su = (ua)a(ua) tu = (ua)a(a ™ 'u=Hu = (va)aa (v u) = (ua)aa=te = (ua)aa™t =

(ua)e = ua, then there is an edge from u to ua. Again,

s(ua) = (ua)a(ua) ' (ua) = (va)a(a v (ua) = (ua)(aa ") (v u)a = (ua)(ea) = ua?,

2

then there is an edge from ua to ua?, so there exist a path from u to ua®. Continuing in this

way, we get a path u — ua — ua? — ua® — -+ — ua™ = ue = u in the induced subgraph with

vertex set Cg(z) of Cay(G, Z), which is hamiltonian. O

Example 1 Let G = S5 and let z = (123)(45).From the composition table we have Cg(z) =
{0), (45), (123), (132), (123)(45), (132)(45)} and z = {(123)(45), (124)(35), (125)(34), (132)(45),
(134)(25), (135)(24), (142)(35), (143)(25), (145)(23), (152)(34), (153)(24), (154)(23), (15)(234),
(14)(235), (15)(243), (13)(245), (14)(253), (13)(254), (12)(345), (12)(354)}. We observe that ei-
ther (123)(45) or (132)(45) in & generates Cg(x). Then, Theorem 2.1 implies that the induced
subgraph with vertex set C¢(x) of the Cayley graph Cay(G, Z) is hamiltonian and is given in
Figure 1.

(123)(45) () (132)(45)

[

(132)  (45) (123)

Figure 1

Theorem 2.2 Let G be a finite non-Abelian group and G act on G by conjugation. Then for x €
G, the induced subgraph with vertex set Ca(x) of the Cayley graph Cay(G,z) is Hamiltonian,

provided T contains two involutions a and b which generates Cq(x) and they commute.

Proof Since T has two involutions a and b which generates Cg(x), we have Cg(z) =
{a,b,ab,e}. Let u € Cg(x). Then uzr = zu for x € G. Since T is the orbit of z € G



A Study on Cayley Graphs of Non-Abelian Groups 81

and G act on G by conjugation, we can choose two involutions s; and sy in T such that
s1 = (ua)a(ua)™! and sy = (ub)b(ub)~!. Now sju = (ua)a(ua) 'u = (ua)a(a ™ u=')u =
(ua)(aa )(u u) = ((ua)e)e = wa, so there is an edge from uw to wa. Again sp(ua) =
(ub)b(ub)"tua = (ub)b(b~'u= ua = (ub)(bb~1)(u " u)a = ((ub)e)ea = uba = wuab, then
there is an edge from wa to wab, so there exist a path from u to uab. Again s;(uab) =
(ua)a(ua)~t(uab) = (ua)a(a™ u=t)(uab) = (ua)(aa=')(u tu)ab = ((ua)e)eab = (ua)ab =
u(aa)b = (ue)b = ub, so there is an edge from uab to ub. Again so(ub) = (ub)b(ub) = (ub) =
(ub)be = ub® = ue = u. Thus we get a Hamiltonian cycle u — ua — uab — ub — u in the

induced subgraph with vertex set C(x) of the Cayley graph Cay(G, ). O

Example 2 Let G = S and let © = (13). From the composition table we have Cg(z) =
{0),(13),(24),(13)(24)} and T = {(12),(13), (14), (23), (24), (34))}. We can observe that T has
two involutions (13) and (24) which generates Cg(z) and(13)(24)=(24)(13). Then, Theorem
2.2 implies that the induced subgraph with vertex set Cg(z) of the Cayley graph Cay(G, Z) is
Hamiltonian and is given in Figure 2.

0 (13)(24)

>

(13) (24)

Figure 2

Theorem 2.3 Let G be a finite non-Abelian group and G act on G by conjugation. Then for
x € G, the induced subgraph with vertex set Cq(x) of the Cayley graph Cay(G,T) has disjoint
Hamiltonian cycles, provided T has three elements a,b, ¢ which do not generate Ce(x) and they

together with identity is isomorphic to Vy, the Klein-4 group.

Proof We have {e,a,b,c} = Vy, so ab = ba = ¢,bc = ¢b = a,ac = ca = b and a, b, ¢ are
involutions. Since Z has three elements a, b, ¢ which do not generate C(z), we see that x # e.
To prove that the induced subgraph with vertex set C(z) of the Cayley graph Cay(G, ) has
disjoint hamiltonian cycles, it is enough to show that there exist at least two closed disjoint
hamiltonian paths in it. Let u € {e,a,b,c}. Since Z is the orbit of 2 € G and G act on G
by conjugation, we can choose two elements s1,s2 € Z such that s; = (ua)a(ua)™t and sg =
(ub)b(ub)~t. Now s1u = (ua)a(ua)™tu = (ua)a(a 'u=u = (ua)(aa™t)(u™tu) = ((ua)e)e =
ua then there is an edge from u to ua. Again sg(ua) = (ub)b(ub) ‘ua = (ub)b(b~'u=ua =
(ub)(bb~ Y (u™tu)a = ((ub)e)ea = uba = uc then there is an edge from ua to uc,consequently
there exist a path from u to uc. Again s1(uc) = (ua)a(ua) " (uc) = (va)a(a™ u=1t)(uc) =
(ua)(aa=Y)(u™tu)e = ((ua)e)c = uac = ub, so there is an edge from uc to ub and hence
there exist a path from u to ub. Again so(ub) = (ub)b(ub)~t(ub) = (ub)b(b~ u=1)(ub) =
(ub)(bb~ 1) (u=tu)b = ((ub)e)b = ubb = ue = u. Thus we get a hamiltonian cycle C; : u — ua —
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ue — ub — wu in the induced subgraph with vertex set Cg(x) of the Cayley graph Cay(G, 7).
In particular, for v = a, we get a hamiltonian cycle a — e — b — ¢ — a.
Since a, b, ¢ do not generate Cg(x), clearly Cq(x) contains at least one element uy ¢ Vj.

Now sju; = (ua)a(ua) tu; = (ua)a(a ™ u=Hu; = (ua)(aa™)(u"tuy) = (ua)e(u=tuy) =

(ua)(u=tuy). Since u € Vi, we have ua = au, then (ua)(u=tu1) = (au)(utur) = aluu=u; =
(ae)ur = auy. Clearly auy ¢ Vy. For if au; € Vi, then au; = ug € Vj, which implies uq =
a luy € Vj, it is a contradiction to our assumption that u, ¢ V,. So there exist an edge from
uy to auy. Again sa(auy) = (ub)b(ub)~(aui) = (ub)b(b~ u=1)(aur) = (ub)(bb~ u"t(aur) =
(ub)eu Y (aur) = (ub)u=t(auy) = (bu)u=t(auy) = bluu=1)(au) = be(auy) = bau; = cuy,
as above we can show that cu; ¢ Vj. Thus there exist an edge from au; to cu; and conse-
quently a path from u; to cu;. Also s1(cu1) = (ua)a(ua)™t(cur) = (ua)ala™ u=1)(cur) =
(ua)(aaHu=t(cur) = (ua)eu (cur) = (ua)u=t(cur) = (auw)u=(cur) = a(uu=1)(cuy) =
ae(cuy) = acu; = buy. Here also bu; ¢ Vi, so there is a path from u; to bu;. Again
s2(bun) = (ub)b(ub)~(bur) =

(ub)b(b~" 1) (buy) = (ub)(bb~)u~ (bus) = (ub)eu(bur) = (ub)u~"(bur) = (bu)u~"(bur) =
b(uu=t)(buy) = be(buy) = (bb)u; = eu; = wu;. Thus we get another hamiltonian cycle
Cy : up — auy — cu; — buy — wuy in the induced subgraph with vertex set Cg(z) of the
Cayley graph Cay(G, ), which is disjoint from Cf. O

Example 3 Let G = Sy and let = (12)(34). From the composition table we have Cg(z) =
{0, (12),(34),(12)(34), (13)(24), (14)(23), (1324), (1423) } and T = {(12)(34), (13)(24), (14)(23)}.
We can observe that Z has three elements which do not generate C¢ (z) and they together with
identity is Vy in S4. Then, Theorem 2.3 implies that the induced subgraph with vertex set
Cg(z) of the Cayley graph Cay(G,Z) has disjoint hamiltonian cycles and are given in Figure
3.

0 (13)(24) (12) (1324)
(12)(34) (14)(23) (34) (1423)
Figure 3

Theorem 2.4 Let G be a finite non-Abelian group and G act on G by conjugation. Then
for x € G, the induced subgraph with vertex set Cq(x) of the Cayley graph Cay(G, ) has two
complete hamiltonian cycles, one with vertex set Py and other with vertex set Py, provided

Ca(x) has a partition (P, Py), where T generates Py 22V and Py is the generating set of P;.

Proof Since P; =V, and T generates Py, we have P; = {e, u1, us, uz}. Then by Theorem
2.3, for every u € Py, we get a hamiltonian cycle C; : u — uu; — uus — uus — wu in the induced

subgraph with vertex set P; of the Cayley graph Cay(G,Z). To prove that it is complete, it is
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enough to show that every pair of vertices in P; has an edge. Let u; and us are two arbitrary
vertices in P;. Since Z is the orbit of € G and G act on G by conjugation, we can choose an
element s € & such that s = (ugus)(uy uz)(ujuz) ™t Now su; = (uyus)(uj 'ug)(urus) ~tuy =
(uruz) (uy Muz) (uy uy un = (wrug)uy  (uguy ') (uy fun) = (urus)uy e = (urug)uy *
= (uzul)ufl = uz(ulufl) = uge = ug. Thus there exist an edge from u; to ug and hence it is
complete.

Since P, is the generating set of Py, we have PP, = P, PP, = P, PLP, = P,, PP, = P;.
Let ugy € Py. Since Z is the orbit of x € G and G act on GG by conjugation, we can choose two

elements sy, sp € & such that s; = (uuy)uy(uuy) ™! and sy = (uug)us(uug) =t for u € Py.

Now syug = (uuy)uy(uuy)  tug = (uul)ul(uflu’l)m = (uul)(ulufl)ufluél = (uup)eu tuy

= (uuy)u"tuy = (mu)utug = ui(uu=Huy = ureuy = uyug. Clearly ujuy ¢ Py, since
P, P, = P,. So there is an edge from w4 to ujuy.

Again

so(urug) = (uug)ug(uus)  (urug) = (uus)us(uy u™t) (urus)
= (uug)(ugus Nu (urus) = (wug)eu ™ (uyuy)
= (ugw)u" (uruy) = uz(vu™ M uiuy

= wse(urua) = (Ugu1)us = ugua,

as above we can show that uguy ¢ P;. Thus there is an edge from ujuy to usus and consequently

a path from wuy to uzuy.
Also

si(uzug) = (uur)ug(vu) " (ugug) = (uur)ug (uy a0 (usug) = (wun) (uruy e~ (uzug)
= (uuy)eu (uszug) = (uur)u (uzug) = (uru)u™ " (usuy)

= up(uu ) (usug) = ure(usuy) = (urus)uy = uguy.

Here also ugug ¢ P1, so there exist a path from wuy to usuy.

Again

s2(ugty) (wug)ug (wug) ™ (ugus) = (wug)uz(uy 'u™") (uguyg)

(uuQ)(uQuz_l)ufl(uguzl) = (uuz)eu " (ugus) = (ugu)u™ " (uguy)

us (v ) (ugug) = use(uguy) = (ugug)uy = euy = uy.

Thus we get another hamiltonian cycle Cs : ugy — ujus — uzug — uguyg — uy in the induced
subgraph with vertex set P» of the Cayley graph Cay(G, z), which is disjoint from Cy. Let
u4,us € Py. We can choose an element s € 7 such that s = (ugugz ) (usuy ) (ugus ')~'. Then
sug = (ugug V) (usuy V) (ugug )" ug = uglug tus)uy us(uy tug) = (use)uy fuse = (uguy Hus =
eus = ug. Thus for any two arbitrary elements uq4,us € P» is connected by an edge, so the
induced subgraph with vertex set P, of the Cayley graph Cay(G, Z) is complete. O

Example 4 Let G = S5 and let = (12)(34). From the composition table we have Cg(z) =
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,(12),(34),(12)(34), (13)(24), (14)(23), (1324), (1423)} and T = {(12)(34), (12)(35), (12)(45),

0,(12)
14)(23), (13)(24), (13)(25), (13)(45), (14)(25), (14)(35), (15)(23), (15)(24), (15)(34), (23)(45),
(34)

);

)
4
5)(34), (24)(35)}. We can observe that C(z) has a partition (P;, Py) where P, = {(), (12)(34),
3)(24), (14)(23)}, which is V} in S5 and P, is the generating set of P;. Then, Theorem 2.4
implies that the induced subgraph with vertex set C(z) of the Cayley graph Cay(G, Z) has

{
(
(2
(1

two complete Hamiltonian cycles and are given in Figure 4.

0 (14)(23) (12) (1423)
(12)(34) (13)(24) (34) (1324)
Figure 4

Theorem 2.5 Let G be a finite non-Abelian group and G act on G by conjugation. Then
for x € G, the induced subgraph with vertex set Ca(x) of the Cayley graph Cay(G,z U Vy) is
complete, provided there exist an element a € T, which generates Cg(x) and |Cq(x)| < 4.

Proof Since a € T which generates Cg () with |Cq(x)| < 4, by Theorem 2.1, for u € Cg(x)
we get a hamiltonian path u — ua — ua? — ua® — ua* = ue = u in the induced subgraph
with vertex set Cg(x) of the Cayley graph Cay(G,Z). Then clearly the induced subgraph
with vertex set C(x) of the Cayley graph Cay(G,Z U Vy) is hamiltonian. Since the graph is
hamiltonian, we know that there exist an edge from ua’ to ua’! . To prove that this graph is
complete, it is enough to show that there exist an edge from ua® to ua’*? for i = 0,1. We can
choose an element s € Vj such that s = ua?u=!.Now s(ua’) = ua?u='(ua’) = ua**2. So there

exist an edge from wa’ to ua**2. Thus the graph is complete. O

Example 5 Let G = S5 and let = (1423). From the composition table we have Cg(x) =
{0, (12)(34), (1423), (1324)} and 7 = {(1234), (1235), (1245), (1423), (1523), (2345), (1534),
(2534), (1342), (1352), (1452), (1432), (1532), (2453), (1543), (2543), (1354), (1324), (1325), (1345),
(1425), (1435), (1524), (2435), (1254), (1243), (1253), (2354), (1542), (1453)}. We can observe that
either (1423) or (1324) in T generates Cq(x) with |Cg(x)| < 4. Then, Theorem 2.5 implies that
the induced subgraph with vertex set Cg(x) of the Cayley graph Cay(G,z U Vy) is complete

and is given in Figure 5.

0 (12)(34)
(1423) (1324)

Figure 5
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Theorem 2.6 Let G be a finite non-Abelian group and G act on G by conjugation. Then
for x € G, the induced subgraph with vertex set Cg(x) of the Cayley graph Cay(G,zT U Vy)
is complete, provided there exist two involutions a,b € T satisfy the conditions ab = ba and

(ab)? = e, which generates Cg(x).

Proof Since Z contains two involutions a and b which generates C(z) and ab = ba, by
Theorem 2.2 we get a hamiltonian path v — wa — wab — ub — u in the induced subgraph
with vertex set Cg(x) of the Cayley graph Cay(G,z). Then clearly the induced subgraph
with vertex set Cg(z) of the Cayley graph Cay(G,Z U V}) is hamiltonian. To prove that it
is complete, it is enough to show that there exist edges from u to uab and ua to ub . Since
Vy is the klein-4 group, we can choose an element s € Vj such that s = u(ab)u™!. Now
su = u(ab)u™ u = (uab)(u~ u) = uabe = uab, so there is an edge from u to uab.

Similarly s(ua) = u(ab)u=t(ua) = uab(u=tu)a = uab(ea) = u(ab)a = u(ba)a = uba? =
ube = ub, so there is an edge from wa to ub. Thus the induced subgraph with vertex set Cg(z)
O

of the Cayley graph Cay(G,z U V}) is complete.

Example 6 Let G = Sy and let © = (13). By Example 2, we get a hamiltonian cycle in the
induced subgraph with vertex set C(x) of the Cayley graph Cay(G, ). If we add (13)(24) € V4

in Z, then it makes the graph complete and is given in Figure 6.

0 (13)(24)

><]

(13) (24)
Figure 6

Theorem 2.7 Let G be a finite non-Abelian group and G act on G by conjugation. Then for
x € G, where x is not an involution, the induced subgraph with vertex set Cq(x) of the Cayley
graph Cay(G,z) is hamiltonian provided |Cq(x)| < 5.

Proof Since x is not an involution, we see that « # e, where e is the identity. Let u € Cg ().
Then ux = zu for € G. Since T is the orbit of x € G and G act on G by conjugation, we can

choose an element s = (ux)z(uz)~! € Z such that s € 2N Cg(z). Now su = (uz)z(uz) tu =

(ux)z(z" v YHYu = (ur)rz (v tu) = (ur)zr=!

e = (ur)zr~! = (uz)e = ur. Then there is an
edge from u to ux. Again s(ur) = (ux)x(uz) !(ur) = (uz)z(e) = (ux)x = ur?, then there is
an edge from uz to uz? so there exist a path from u to uz?. Continuing in this way, we get a
path from u to uz® for i € N. Since @ is finite and = € G, we have uz’ = ux’ for some i and j.
Now (uz?)z~" = (uz®)x~% = ue = u. Thus the induced subgraph with vertex set Cg(z) of the

Cayley graph Cay(G, Z) is hamiltonian. O

Example 7 Let G = S5 and let = (13245). From the composition table we have Cg(z) =
{0), (15423), (13245), (12534), (14352)} and 7 = {(12345), (14532), (12435), (15423), (13245),
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(15324), (15243), (12453), (14325), (15432), (13452), (14523), (15342), (12534), (13425), (14235),
(13542), (15234), (14352), (13254), (12354), (14253), (12543), (13524)}. We observe that 22 # e
with |Cq(z)| < 5. Then, Theorem 2.7 implies that the induced subgraph with vertex set Cq(z)
of the Cayley graph Cay(G, z) is hamiltonian and is given in Figure 7.

0

(15423) (13245)

(12534) (14352)

Figure 7

Theorem 2.8 Let G be a finite non-Abelian group and N be a non-trivial normal subgroup of
G. Then Cay(%,Z(%)) is complete, provided Z(<$) # e.

Proof Let u,v € % with u # v. Then u = g1h and v = goh for g1,g92 € G and h € N. Since
s € Z($)and Z(£) # e, we have an element s = (g; 'g2)h € Z() such that sz = zs for every
w € Z(§). Now su = (gy 'g2)h(g1h) = (910) (91 'g2)h = (9191 ")g2)h = (eg2)h = g2h = v. So
for any two arbitrary vertices u,v in % has an edge. Thus the Cayley graph Cay(%, Z (%)) is

complete. O

Example 8 Let G = S;. We observe that Cay(A%, Z(A%)) is complete where as Cay(v%, Z(v))
is not, since Z(V%) =e.

Suppose G = Dy.We have N = ((), (13)(24)) is a normal subgroup of G with Z(%) # e.
Then, Theorem 2.8 implies that Cay(%, Z(%)) is complete and is shown in Figure 8.

((13),(24))  ((12)(34),(14)(23))

=

(0,(13)(24))  ((1234),(1432))

Figure 8
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81. Introduction

Let F = [0,1] be a set of reals between 0 and 1 with addition (+), and multiplication (-) and
the ordinary order < such that

x+y=max{x,y}andz -y = min{z,y}

for all z,y € F. We call F a fuzzy semiring. For any z,y € F, we omit the dot of x - y and
simply write xy.
Let M, (F) denote the set of all n x n matrices over F. Define + and - on M, (IF)as follows:

(VA, B e MH(F)) A+ B = [aij + bij]nxn; A-B= [Z aikbkj]an.
k=1

It is easy to verify that (M, (F), +,-) is a semiring with the operations defined above. And
the matrices in (M, (F), +, ) are called fuzzy matrices.

Let F be a fuzzy semiring and A € M,,(F). We denote the transpose of A by A’ and the
entry of A in the ith row and jth column by a;.
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Huizhou University (hzux1201523).
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For any A € M, (F) and any A € F, we define

AA = [Aaij]an.

A mapping T : M,,(F) — M, (F) is called a linear operator if

T(aA +bB) = aT(A) + bT(B)

for all a,b € F and A,B € M,(F). Notice that if T is a linear operator on M, (F), then
T(O)=0.

A, B in M, (F) are said to be orthogonal (see [?]) if AB = BA = O. Let T be an operator
on M, (F). We say that T preserves orthogonality if T'(A) and T'(B) are orthogonal whenever
A and B are orthogonal.

During the past 100 years, one of the most active and fertile subjects in matrix theory
is the linear preserver problem (LPP for short), which concerns the characterization of linear
operators on matrix spaces that leave certain functions, subsets, relations, etc., invariant. The
first paper can be traced down to Frobenius’s work in 1897. Since then, a number of works in
the area have been published. Among these works, although the linear operators concerned are
mostly linear operators on matrix spaces over some fields or rings, the same problem has been
extended to matrices over various semirings.

Many authors have studied the linear operators that preserve invariants of matrices over
semirings. For example, idempotent preservers were investigated by Song, Kang and Beasley
([16]), Dolzan and Oblak ([6]), Orel ([14])et al. Nilpotent preservers were discussed by Song,
Kang and Jun ([19]), Li and Tan ([12]) et al. Regularity preservers were studied by Song, Kang,
Jun, Beasley and Sze in [10] and [21] et al. Pshenitsyna ([15]) considered invertibility preservers.
Besides, Beasley, Guterman, Jun and Song ([1])investigated the linear preservers of extremes of
rank inequalities over semirings, Beasley and Lee([2])studied the linear operators that strongly
preserve r-potent matrices over semirings, Song and Kang ([20]) discussed commuting pairs of
matrices preservers and so on.

The linear preserver problems about orthogonality of matrices are more and more caused
people’s attention. In [17] and [18], Semrl studied maps on idempotents matrices that preserve
orthogonality over a division ring. Burgos et al. ([3]) studied orthogonality preserving operators
between C*-algebras, JB*-algebras and JB*-triples. Cui, Hou and Park ([5]) described the addi-
tive maps preserving the indefinite orthogonality of operators acting on indefinite inner product
spaces. Also, there are some literature on maps that approximately preserve orthogonality (see
[4],19] et al).

Note that the researches about linear operators preserving orthogonality of matrices over
semiring are not much, and fuzzy semirings are the ones which have bright background. In
this paper our purpose is to obtain characterizations of invertible linear operators that preserve
orthogonality matrices over fuzzy semirings. In Section 2 we characterize invertible linear
operators preserving orthogonality of fuzzy matrices. Based on the obtained results, we study
the invertible linear operators preserving orthogonality of matrices over the direct product of

fuzzy semirings in Sections 3, and obtain some complete characterizations.



90 Yizhi Chen and Jing Tian

For notations and terminologies occurred but not mentioned in this paper, the readers are
referred to [8].

82. Linear Operators Preserving Orthogonality of Fuzzy Matrices

In this section, we will study the complete characterizations of linear operators that preserve
orthogonality of fuzzy matrices.

Let S be a semiring. A matrix P € M,,(S) is called a permutation matriz (see [21]) if it has
exactly one entry 1 in each row and each column and 0’s elsewhere. Observe that if P € M, (S)
is a permutation matrix, then PP = P'P = 1.

For each x € F, define
0, ifzx=0,

1, ifz#0.

Then the mapping
p:F— By, x— 2"

is a homomorphism. Its entrywise extension to a mapping
Y My (F) = M, (By), A — A*

preserves sums, products and multiplication by scalars.
It is well known the only invertible matrices in M, (B;) are permutation matrices (see [20]).

In fact, we can also obtain the following theorem.

Theorem 2.1 The permutation matrices are the only invertible matrices in My (F).

Proof Let A € M,(F) be an invertible matrix. Then there exists a matrix B € M, (F) such
that AB = BA = I,,. This implies A*B* = B*A* = I,,, and thus A* and B* are permutation
matrices with B* = (A*)’. Notice that any product of two elements in F is their minimum, the

nonzero entries in A are 1’s. Thus, A is a permutation matrix. O

Let E;; € M, (F) is the matrix with 1 as its (4, j)-entry and 0 elsewhere. We call such
E;; a cell (see [19]) and denote E,, = {E; ;|i,j € n}, where n = {1,2,--- ,n}. By virtue of
definition, for any E; ;, E; € E,, we can easily have that

E',la Zf .7 = ka
B jEg, = ’
O, otherwise.

From [21], a semiring S with 0 and 1 is said to be commutative if (S,-,1) is commutative;
a semiring S is called an antiring if a +b = 0 implies a = b = 0 for any a,b € S, i.e., 0 is the
unique invertible element in (S, +,0); a semiring S is said to be entire if a # 0,b # 0 imply

ab # 0 for any a,b € S. It is obvious that fuzzy semiring F is a commutative entire antiring.

Lemma 2.2([16]) Let S be a commutative antiring and T a linear operator on M, (S). Then
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T is invertible if and only if there exist a permutation o on the set {(i,7)|i,j € n} and unit
elements b;; € S,i,j € n such that T(E; j) = bijEqa ;) -

Lemma 2.2 shows that if T is a linear operator on M, (S) in which S is a commutative
antiring, then 7" permutes E,, with unit scalar multiplication.

Theorem 2.3 Let F be a fuzzy semiring. If T is a linear operator on M,,(F) with n = 1, then

T preserves orthogonality of fuzzy matrices.

Proof Let F be a fuzzy semiring and T a linear operator on M, (F) with n = 1. Suppose
that A, B € M, (F) such that A and B are orthogonal. Then, we must have that A = O
or B = O. Tt follows from the linearity of 7' that T(O) = O. Furthermore, T(A)T(B) =
T(B)T(A) = O. Hence, T'(A) and T'(B) are orthogonal. So T preserves orthogonality of fuzzy
matrices. |

Theorem 2.4 Let F be a fuzzy semiring and T : M, (F) — M, (F) a linear operator with
n > 2. Then T is an invertible linear operator that preserves orthogonality of fuzzy matrices if
and only if there exists a permutation matriz P € M,(B1) such that either T(X) = PXP* for
all X € M,,(F), or T(X) = PX'P" for all X € M,(F).

Proof (=) Let T be an invertible linear operator on M, (F) which preserves orthogonality
of fuzzy matrices. Note that fuzzy semiring [F is a commutative entire antiring, by the virtue of
Lemma 2.2, there exists a permutation « on the set {(4, )|, € n} such that T(E; ;) = Eq j)-
For any i # j, denote T'(E; ;) = Ep 4. If p = g then it follows from E; ; E; ; = O that

(T(Em))Q = (Ep,p)Q =Epp = 0,

it is a contradiction. Thus, p # ¢. Note that « is a permutation, then there is a permutation
o of {1,2,---,n} such that T(E; ;) = E,(;),0(;) for each i =1,2,--- ,n.
Define an operator L on M, (F) by

L(X)=P'T(X)P

for all X € M, (F), where P is a permutation matrix corresponding to o such that L(E;;) =
Ea(i),o(i) for each i = 1, 2, e, N,

It is easy to see that L is an invertible linear operator on M, (F) that preserves orthogonality
of matrices. By Lemma 2.2, L permutes E,,. Therefor, for any cell E, ; in E,, there exists
exactly one cell E, ; in E,, such that L(E, ;) = Ep 4.

Suppose that r # s. Since L is injective, we have p # ¢ because L(E;;) = Ey(;),(;) for
each i =1,2,--- ,n. Assume that p # r and p # s. Since E, ;E,, = E}, p,E, s = O, we have

L(Ep-,p)L(Er,s) =EppEpqg=Epq=0,

it is a contradiction. Hence, p = r or p = s. Similarly, ¢ = r or ¢ = s. Therefore, for each E, ,
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in E,,
L(E,s)=E,s or L(E. ) =E;,.

Suppose that L(E,s) = E, ; for some E, ; € E,, with r # s and L(E,;) = E;, for some
t € n with ¢t # r,s. It follows form E, E,; = E,E, s = O that

L(Er,t)L(Er,s) = Et,rEr,s = Et,s = 07

it is a contradiction. It follows that if L(E; ;) = E; ; for some E; ; € E,, with i # j, then we
have L(E, ) = E, s for all B, ;s € E,,.

Consequently, we have established that L(X) = X or L(X) = X' for all X € M, (F).

If L(X) =X for all X € M, (F). By the definition of L, we have

P'T(X)P =X,

or equivalently
T(X)= PXP'
for all X € M, (F).
Similarly, if L(X) = X" for all X € M, (F), we can get
T(X)= PX'P'.

(<=) Suppose that T'(X) = PX P! for all X € M,,(F). It’s a routine matter to verify that
T is invertible. For any X,Y € M, (F), if X and Y are orthogonal, then XY =YX = O. Tt
follows that

That is to say, T(X) and T(Y) are orthogonal. Thus, T preserves orthogonality of fuzzy

matrices.
Similarly, if T(X) = PX'P* for all X € M,,(F), then T is also an invertible linear operator
preserving orthogonality of fuzzy matrices. a

Example 2.5 Let
0 0 1
0 0 0
1 00
0 1 0

o O = O

ba a matrix in M4(F). Define an operator T' on My(F) by
T(X) = PX'P!

for all X € My(F). By Theorem 2.4, T is an invertible linear operator preserving orthogonality

of fuzzy matrices.
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§3. Linear Operators Preserving Orthogonality of Matrices Over the Direct
Product of Fuzzy Semirings

In this section we will study the invertible linear operators that preserve orthogonality of ma-
trices over the direct product of fuzzy semirings.

Hereafter, let S = [, Sx, where Sy = F is a fuzzy semiring for any A € A. For any A € A
and any s € S, we denote s(A) by sy. Define

(CL+ b))\ = a) + by, (ab))\ = axbx (a,b €S, \e /\).
It is easy to verify that (S, +,-) is a semiring with 0 and 1 under the operations defined above.
For any A = [a;;] € M, (S) and any A € A, Ay := [(a;j)r] € M, (Sy). It is obvious that
(A+ B)A = A\ + B, (AB)X = A)B) and (sA)) = sy Ax

for all A, B € M,(S) and all s € S.

By the above definition, it is not hard to obtain the following result.
Lemma 3.1 Let A, B € M, (S). Then the following statements hold:

(i) A= B if and only if Ay = By for any X € A;

(ii) A and B are orthogonal if and only if Ax and By are orthogonal for any A € A.

The following lemma is due to Orel [14].

Lemma 3.2 IfT : M,(S) — M,(S) is a linear operator, then for any X\ € A, there exists a
unique linear operator Tx : M, (Sx) — M, (Sx) such that (T'(A))x = Tx(Ay) for any A € M,,(S).

Theorem 3.3 Let S = [[ ., S, where Sy = F is a fuzzy semiring for any X € A. If T is a

linear operator on M,,(S) with n = 1, then T' preserves orthogonality of matrices.

Proof Assume that A,B € M, (S), and A and B are orthogonal. By Lemma 3.1 (ii),
we have Ay and B) are orthogonal for any A € A. It follows from Theorem 2.3 that (T'(A))x
and (T(B))x are orthogonal. Again by Lemma 3.1 (ii), we obtain that T'(A4) and T'(B) are

orthogonal. Hence T preserves orthogonality of matrices. a

Proposition 3.4 Let T be a linear operator on M, (S). Then T is invertible if and only if Tx
is invertible for any X € A.

Proof (=) Let T be a linear operator on M,(S). Suppose that T is invertible. For
any A € A and A, B € M, (S)), there exist X,Y € M,(S) such that X, = A, Y, = B, and
X, =Y, =0 for any u # \. If T\(A) = T\(B) then

(T(X))x =Tr(A) =Tx(B) = (T'(Y))x-

Also,



94 Yizhi Chen and Jing Tian

for any p # A. This shows that T'(X) = T(Y). Since T is injective, we have X =Y. Further,
A=X,=Y,=B.

Thus T} is injective.
On the other hand, since T is surjective, there exists @ € M, (S) such that T(Q) =Y. We

can deduce that
B=Y)x=T(Q)x=TA(Qx).

That is to say, T) is surjective. Hence T is invertible.
(<=) Assume that T) is invertible for any A € A. For any A, B € M, (S), if T'(A) = T(B)
then
Tx(Ax) = (T'(A))x = (T(B))x = Tx(B>).

Since Ty is injective, we have Ay = By. By Lemma 3.1 (i) it follows that A = B. So T is
injective. Since T} is surjective, there exists X such that T\(X,) = By. Take A € M, (S) with
Ax = X for any A € A. Tt is clear that T(A) = B, and so T is surjective. Thus T is invertible.
O

Proposition 3.5 Let T be a linear operator on M, (S). Then T preserves orthogonality of

matrices if and only if T\ preserves orthogonality of fuzzy matrices for any X € A.

Proof (=) For any A € A and any A, B € M, (FF), there exist X,Y € M, (S) such that
Xyx=AY,=Band X, =Y, = O for any p # A. If A and B are orthogonal, then XY =
Y X = O. Since T preserves orthogonality of matrices, we have T(X)T'(Y) = T(Y)T(X) = O.
Further,

(AT (B) = (T(X)AT(Y)x = (T(X)T(Y)x = O.

Similarly, Ty (B)Tx(A) = O. This shows that T»(A) and T»(B) are orthogonal. So T preserves
orthogonality of fuzzy matrices as required.
(<) For any X,Y € M,(S), if X and Y are orthogonal, then X and Y are orthogonal

for any A € A by Lemma 3.1 (7). Since T) preserves orthogonality of fuzzy matrices, we have
(TXDAT(Y))x = Ta(XA)TA(Yr) = O.

Similarly, (T(Y))x(T(X))x = O. So T(X)x and T(Y), are orthogonal. Again by Lemma 3.1
(1), we can show that T'(X) and T'(Y") are orthogonal. Therefore, T preserves orthogonality of
matrices. |

In the following, we will give the main theorem of this section.

Theorem 3.6 Let S = [],.,Sx, where Sy = F is a fuzzy semiring for any X\ € A. Let
T : My(S) — M,(S be a linear operator with n > 2. Then T is an invertible linear operator
preserving orthogonality of matrices if and only if there exist P € M,(S) and s1,s2 € S such
that

T(X) = P(s1X + 52 X")P"
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for all X € M, (S), where (s1)x, (s2)x € {0,1}, (s1)a # (s2)x and Py € M, (F) is a permutation

matrix for any A € A.

Proof (=) It follows from Propositions 3.4 and 3.5 that T) is an invertible linear operator
preserving orthogonality of matrices. For any X € M, (S), X\ € M, (F). By virtue of Theorem
2.4, there exists permutation matrix Py € M, (IF) such that either

Ta(X») = PAX, P! (1)

for all X € M, (Sy), or
TA(Xy) = PAXS P} (2)

for all X € M,,(Sx). Let A1 := {X € A|T) is the form of (1)} and Ag := {\ € A|T) is the form
of (2)}. It is clear that A1 (A2 = 0, A1 UA2 = A. For i = 1,2, let s; € S, where (s;)y = 1 if
A € A; and 0 otherwise. Thus, for any X € M, (S), there exist P € M, (S) and s1, s2 € S such
that

T(X) = P(s1X 4 s2X") P,

where (s1)x, (s2)x € {0,1}, (s1)x # (s2)x and Py € M, (F) is a permutation matrix for any
AEA.

(<) For any A € A and any A € M, (Sy), there exists X € M,,(S) such that A = X . We
have
T)\(A) = T)\(X)\) = (T(X)))\ = (P(SlX + SQXt)Pt))\.

If (s1)x =1, (s2)x = 0, then T\ (A) = P\AP! for any A € M,,(S»). Otherwise, Tx(A) = PyA'P!
for any A € M, (Sy). It follows from Theorem 2.4 that T} is an invertible linear operator
preserving orthogonality. Hence T is an invertible linear operator preserving orthogonality of
matrices by Propositions 3.4 and 3.5. o

Thus we have obtained complete characterizations of invertible linear operators preserving

orthogonality of matrices over the direct product of fuzzy semirings by Theorems 3.3 and 3.6.
Example 3.7 Let S=F x F x F. Take

(0,1,1) (1,0,0) (0,0,0)
P ={(1,0,0) (0,1,0) (0,0,1)| € M3(S)
(0,0,0) (0,0,1) (1,1,0)

and s; = (0,1,0),s2 = (1,0,1) in S. Define an operator on Ms(S) by
T(X) = P(s1X +s:X")P*

for all X € M3(S).
It is obvious that Py(\ = 1,2,3) are all permutation matrices. Thus, by Theorem 3.6, T

is an invertible linear operator that preserves orthogonality of matrices over S.
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§81. Introduction

Let G = (V, E) be a connected simple graph. The distance between two vertices u and v in
G, denoted by d_ (u,v) is the length of a shortest path between u and v in G. The degree of
a vertex u in G, denoted by d (u) is the number of vertices that are adjacent to v in G. The
Wiener index W (G) of a graph G is a distance based graph invariant introduced by H. Wiener
[18] in order to determine the boiling point of paraffin. It is defined as the sum of distance
between all pairs of vertices in G. i.e., W(G) = Z{u,u}gv(c)
DD(G) and Gutman index Gut(G) of a graph are weighted versions of Wiener index, which

d,, (u,v). The degree distance index

are defined as follows:

DD(G)= Y (da(u)+de(v))da(u,v)
{u,v}CV(G)

and

Gut(G) = Z de(u) dg(v) dg(u,v).
{uv}CV(G)

The degree distance index which is a degree distance based graph invariant, was introduced
independently by A. A. Dobrynin, A. A. Kochetova [6] and I. Gutman [10]. The Gutman
index, earlier known as Schultz index of the second kind was introduced in 1994 by Gutman
[10]. Tt may be noted that if G is a tree on n vertices, then the Wiener index, degree distance
index and Gutman index are closely related by the identities DD(G) = 4W(G) —n(n — 1) and

1Received December 9, 2015, Accepted November 15, 2016.
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Gut(G) =4W(G) — (2n — 1)(n — 1). More details about Wiener index and its variants can be
found in [2, 3, 4, 5, 6, 7, 12, 14, 17] and the references cited therein.

The corona [9] of two graphs G and G5 is the graph obtained by taking one copy of Gy,
|[V(G1)| copies of G2 and joining each i-th vertex of Gy to every vertex in the i-th copy of
G2. The neighborhood corona [13] of two graphs G; and Gy denoted by G; * Ga, is a variant
of corona of two graphs and is defined as the graph obtained by taking one copy of G; and
|[V(G1)| copies of Gg, and joining every neighbour of the i-th vertex of G; to every vertex in
the i-th copy of G5. Recently, various graph invariants of corona product of two graphs have

been studied, for example, see [1, 15, 19].

Example 1.1 The neighborhood corona P5 x Ps.

In this paper, we compute Wiener index, degree distance index and Gutman index of
G1 * GQ.

82. Main Results

Let Gy be a graph with vertex set V(G1) = {v1,v2, -+ ,Un, }, edge E(G1) = {e1,e2, - ,em, }
and let G2 be a graph with vertex set V(Ga) = {ui,us, - ,un,} and edge set E(G2) =

/

{e, ey, -+ e, }. We denote the vertex set of the i-th copy of G2 by Vi(G2) = {ui1, w2, , Uin, }-

To prove our main results we need the following definitions and two lemmas whose proofs

follows directly by the definition of neighborhood corona.
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Definition 2.1 For a graph G, we define

EA(G) :={e € E(G) : e is contained in a triangle of G},

Ty(G):= > dw) +d(v) and To(G):= > d(u)d(v).

wweEA(G) wveEA(G)

Clearly, if G has a vertex v of degree of |[V(G)| — 1 and G — v is connected graph with at
least two vertices, then Fa(G) = E(G), T1(G) = M1(G) and T>(G) = M2(G).

Lemma 2.2 Let G = G1 * Go. Then

(ng +1)dg, (x), ifzeV(G),
dc (IE) -
dG2 (JJ) + d01 (’Ui), Zfi[: S ‘/;(GQ)

Lemma 2.3 If G = Gy * G, then
(1) dG(viv vj) - dG1 (’Ui’ vj)) v v, vj € V(G1)7
1, if ujur € E(Ga),
(2) de(uij, wir) = ;
2, Zf UjUE ¢ E(Gg)

3, if vivg € E(G1) and v;ur, & Ea(Gh),
(3) fori #k, dG(uija Ukm) = 2, if viv, € EA(Gl), ;
de, (vi,vg), if vivg ¢ E(Gy).

da, (vi,vx), if vi # v,
(4) dG (uijvvk) =

2, if v = vg.
Theorem 2.4 The Wiener index of G = G1 * G2 is given by

W(G) = (712 + 1)2W(G1) + nl(ng(ng - 1) - m2) + n§(2m1 - |EA(G1)|) + 2711712.

Proof We know that

W(G) = Y d(z, y) = A+ As + A + Ay, (2.1)
{z, y}CV(G)
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where

Al = Z dG(’UZ‘, ’Uj),

{viv;}CV(Gy)

Z Z dG (uij7 uik)’

vi€V(G1) {uy;,u,, FEVi(G2)

Az = Z Z de (g, ujm)

{viv}CV(GL) w,, €V;(G2)
Uim €V, (G2)

and Ay = Z Z de(u,;, vi).

v; EV(Gy) u,;; €Vi(G2)
v €VI(G1)

Ay

By Lemma 2.3, we have

Ar= Y dglvn v = Y dg, (v, vy) = W(Gh),

{vi» vj}ICEVI(G1) {vi,v;}CV(G1)

A2 - Z Z dG (uij7 um)

vi €V(G1) {uy;,u,, YEVi(G2)

SR D SEEECD SR

v €V(G1) \ {uy;u,y, }EVi(Ga) ujuy €E(G2)
= Y (na(ng — 1) = my) = ny(na(ny — 1) — my),
v, €V (G1)

Az = Z Z dG (Uik, ujm)

{vi, v;}CV(G1) w,pevi(Ga)
ujim €V;(G2)

=n3 Z dg, (viy, v;) + Z 2 — Z 1

{'Ui, ’UJ}QV(Gl) ’Ui'U]‘GE(Gl) 'Ui’UjGEA(Gl)
n3(W(G1) +2m1 — |Ea(Gh)))

and

A4 = Z Z dg(’Uk, uij) + Z 2

v; €V (G5) u;j €V;(Ga) ui; €Vi(G2)
v €V (G1)
UV F V4

= N9y Z Z dG1 (vi, vE)+ 2n1n2

V4 EV(Gl) Vi EV(Gl)

= 2”2W(G1) + 2n1ns.

(2.5)
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Applying (2.2), (2.3), (2.4) and (2.5) in (2.1), we obtain the desired result. O
Corollary 2.5 If Gy is a triangle free graph, then the Wiener index of G = G1* G is given by

W(G) = (na + 1)2W(G1) +n1(n2(ng — 1) —me) + 2n§m1 + 2n1ns.

Corollary 2.6 If Gy = Hy V Hy (join of two connected graphs Hy and Hoy with |V (Hy)| > 2),
then the Wiener index of G = Gy * Go is given by

W(G) = (ng + 1)2°W(G1) + ni(nz(ng — 1) — ma) + nimy + 2n1ns.

Lemma 2.7([4]) Let P, and C,, denote the path and cycle on n vertices, respectively. Then

n(n? —1)

W(Pn) = 6

and

n3/8, if n is even,
n(n?—1)/8, if nis odd.

Applying the above lemma in Theorem 2.4, we obtain the following corollary.

Corollary 2.8 (1) W(P, = Py,) = =((m + 1)?n® + (17m? — 2m + 5)n) — 2m?;
(2) W(Cay, % Cpy) = ((m + 1)*n% + 6m?)n;
3) For n # 1, W(Capnt1 % Cp) = (2n + 1)(m?n? + m?n + 2mn? + 6m? + 2mn +n? +n)/2;
4) Forn # 1, W(Capi1%Pp) = (2n+1)(m*n? +m?n+2mn? +6m?+2mn+n?+n+2)/2;
)
)

| =

5) W(Cay * Py,) = m?n® 4+ 2mn3 + 6m?2n + n® + 2n;

6) W(P,xCp,) = é((m +1)2n2 + (17m? — 2m — 1)n) — 2m>.

The first and second Zagreb indices of a graph denoted by M;(G) and Mz (G), respectively,
are degree based topological indices introduced by Gutman and N. Trinajsti¢ ([11]). These two

(
(
(5) W
(6) W

indices are defined as

M(G) = Y de(v)+da(vm) = dg(v)

ei=vvm €EE(G) v, €G

and

MQ(G) = Z dg(’l}l)dg(’vm).

e;=vvm €E(G)
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Now, we derive a formula for DD(G1 % G3) in terms of degree distance of G1, Wiener index
of (G; and first Zagreb index of G; and Gs.

Theorem 2.9 The degree distance index of G = G1 * Gy is given by

DD(G) = (2n3 + 3ny 4+ 1)DD(G1) + 4ma(ng + D)W (Gy) + n3(2M1(G1) — T1(Gh))
—n1 My (Gz) + (Sng + (sz + 4)n2 — 4m2)m1 + 4m2n2(n1 — |EA(G1)|)

Proof We know that

DD(G)= ) (dg(2) +de(y)) do(z,y) = A+ Az + Az + Ay, (2.6)
{z,y}CV(G)
where
Ay = Z (dc(vi)+dc(vj)) de (vis v5),
{vi, v;}CV(G1)
A=Y > [de (uiz) +dg (wik)] dg (uij, wik),
vi€V(G1) {uij,uin}CVi(Ga)
Ag= > > [de(wik) + dg (ujm)] de (win, wm)
{vi,v; }CV(G1) wip€Vi(G2)
ujm €V;(G2)
and Ay =3 vy 2ougevian e (Uig) + de (vk)]dg (uiz, vi).
'U;CGV(Gl)

Applying Lemmas 2.2 and 2.3, we compute Ay, Ao, A3 and A, as follows:

A = Z (dc(vi) + dc(vj)) dc(viv Uj)

{vi, v;}CV(G1)
=(n2+1) S (de, () +dg, (v) dg, (vi, v))
{vi, v;}CV(G1)
= (n2 + 1)DD(Gh). (2.7)

A=Y >, [da (uij) + dg (wir)] dg (uig, wir)

v €V (G1) {uij,uir } CVi(G2)

Yoo > 2de, (0) F de, (wy) + de, (w)]

v, €V (G1) {wij uin } CVi(G2)

Z [2dG (Ul) + dG2 (u]) + dG2 (uk)]
ujur €EE(G2)

> {2(na(ng — 1)dg, (v:) + 2(ng — 1)my) — 2mad,, (vi) — Mi(Ga2)}
v, €V (G1)

= 4(TL2(TL2 — 1) — mg)ml + 4n1m2(n2 — 1) — n1M1 (Gg) (28)
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Az = > > ldg(uin) +dg (wim)] de (win, wjm)
{vi, v;}CV(G1) u;p€V;(Ga)
ujm €V (G2)

= Z dcl (vi, v;) Z [dcl (vi) + dG1 (v;) + dG2 (uir) + d02 (wjm)]

{viv;}CV(G1) uil €Vi(G2)
uijVj(G2)
+2 Z Z [dcl (vi) + de, (v;) + de, (uir) + de, (wjm)]

vivj EE(G1) u;p€V;(Ga)
Ujm EVj(G2)

- Z Z [dcl (vi) + dg, (v;) + de, (uir) + de, (wjm)]
’Uz"UjEEA(Gl) w;k €Vi(Ga)
ujm €V;(Gz)

= > dg, (i, vy) [M3(dg, (v3) + g, (v))) + dnamo)]
{vi,v;}CV(G1)

+2 Y [n3(dg, (i) +dg, (v7)) + 4nams]
UivjEE(Gl)

- Y [n3(dg, (i) +dg, (v)) + dnamo]
v;v; EEA(G1)

= ngDD(Gl) + 4n2m2W(G1) + n§(2M1 (Gl) — Tl(Gl)) + 4n2m2(2m1 — |EA(G1)|) (2.9)

Ac= >0 Y ldg(uy) + dg (vn))dg (i, i)
v, €V(G1) uj; €V;(Ga)
v €V (G1)

> > lde(ui) + do(wi)ldg (wig, vi) +2 Y (dg(uij) +dg (vi))
v; €V(G1) | u;j€V;(Ga) wui; €Vi(Ga)
v, EV(G)
Vi FVg

= Z { Z (ngdG1 (vi)+"2("2+l)dcl ('U;C)Jr27n2)dc1 (vi, vk) +2[2m2+n2(n2+2)dc(vi)]}

v eV(Gy) | vpeviay)
= (n3 +2n2)DD(G1) + 4maW(G1) + 4nima + 4my (na + 2)na. (2.10)
Applying (2.7), (2.8), (2.9) and (2.10) in (2.6), we obtain the desired result. O

Corollary 2.10 If Gy is a triangle free graph, then the degree distance index of G = G1 * G2

is given by

DD(G) = (2n3 + 3n2 + 1)DD(G1) + 4ma(na + 1)W(G1) + 2n3M1(G1)
- n1M1 (GQ) + (871% + (8m2 + 4)7’1,2 - 4m2)m1 + 4m2n2n1.

Corollary 2.11 If Gy = Hy V Hy (join of two connected graphs Hy and Hy with |V (Hy)| = 2),



104 Chandrashekar Adiga, Rakshith B. R., Sumithra and N. Anitha

then the degree distance index of G = G1 * Ga is given by

DD(G) = (2n3 + 3n2 + 1)DD(G1) + 4ma(na + 1)W(G1) + n3 M (Gh)
—n1 My (Gz) + (2n§ + (ma2 + 1)ng — ma)dmq + dmanan;.

Lemma 2.12([7,16]) Let P, and C,, denote the path and cycle on n vertices, respectively. Then

n(n—1)(2n —1)

DD(P,) = .

and
n3/2, if n is even,
DD(C,) =
n(n?—1)/2, ifnis odd.

Using Lemmas 2.7, 2.12 and also the facts that My1(P,) = 4n — 6 (n > 2), Ma(P,) =
dn —8 (n = 3), My(C,) = M2(C},) = 4n in Theorem 2.9, we obtain the following corollary.

Corollary 2.13 (1) DD(P, x P,,) = (2n3 — 2n? + 28n — 28)m? + (2n® — 3n? — 15n + 8)m —
n? +11n —4;

(2) DD(Cyy, * Cp) = 4n(3m?*n? + 4mn? + 14m? + n? — 2m);

(3) forn # 1, DD(Copi1 % Cry) = 2(2n 4+ 1)(3m?n? + 3m?2n + 4mn? + 14m? + dmn +n? —
2m +n);

(4) forn # 1, DD(Copy1%Pp) = 2(2n+1)(3m2n2 +3m2n+3mn?+14m?+3mn—8m+5);
(5) DD(Cay, * Py) = 4n(3m>n? + 3mn? + 14m? — 8m + 5);

1
(6) DD(P, +C,,) = g((6m?+8m+2)n3 —(6m2+9m+3)n?+ (84m? — 11m+1)n) — 28m>.

Now, we derive a formula for Gut(Gy * G2) in terms of degree distance of G, Gutman
index of GGy, Wiener index of G; and Zagreb indices of G; and Gbs.

Theorem 2.14 The Gutman index of G = G1 * Gy is given by

Gut(G) = (2n2 + 1)*Gut(G1) + 2ma(2n2 + 1)DD(Gy) + 4m3aW (G1) — (n1 + 2my ) My (G2)
— nle(Gg) + (TLQ(?)?’LQ + dmo + 1) - mg)Ml (Gl) + n§(2M2(G1) - TQ(Gl))
- 2n2m2T1 (Gl) - 4m§|EA(G1)| + 8m1m2[2n2 + mg] + 47’1,177’1,3

Proof Notice that

Gut(G) = Y (ds(2) ds(y)) d(x, y) = A1 + A + Az + Ay, (2.11)
{z.y}CV(Q)
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where
A= Y o) dg(vy)) do (v, vy),
{vi,v;}CV(G1)
Az = Z Z de (wiz) dg (uir) de (wij, wik),
v €V(G1) {uiz,uik }CVi(G2)
A3 = > S dg(uik) dg (wim) dg (ik, wjm)
{vi,v; }CV(G1) wuip€Vi(G2)
ujm €V;(G2)
and A4 = Z'UZEV(GQ % E“i]‘EVi(Gz) dG (ulj) dG (’Uk) dG (Uij, ’Uk).
v €V (G1)

Applying Lemmas 2.2 and 2.3, A;(i = 1,2, 3,4) can be computed as follows:

A= Yo do(wi) do(v)) dg(vi, v5)
{vi, v;}CV(G1)
= (n2 +1)° Yo e, (vi) dg, (v)] dg, (vi, vj) = (n2 +1)*Gut(Gh), (2.12)

{vi, v;}CV(G1)

A2 = Z Z dg (uiz) dg (uik) dg(wij, wir)

v €V(G1) {uij, uirp}CVi(G2)

> <2 > de (uij) de(uin) — Y dg(uij) dg (ui)

v €V(G1) {uij, wir}CVi(G2) ujur EE(G2)

o2 > [dg, (wij) dg, (wix) + dg, (vi) (dg, (uij) + dg, (wir)) + dg(vi)]
v; €V (G1) {uij, win}CVi(G2)

= Y (g, (W) de, (wik) + dg, (03) [de, (uig) + de, (wir)] + d&(v:))

ujup€E(G2)
3 {4m§ — Mi(Ga) +4(n2 — Dymadg, (vi) + na(na — 1)d% (v;)
v; EV(G1)
_MQ(GQ) — dc (U@)Ml (Gz) — mzdz (’U,)}
= n1(4m§ — MQ(GQ)) — (n1 + 2m1)M1 (Gz) + 8m1m2(n2 — 1) + (nz(nz — 1) — mz)Ml(Gl),
(2.13)

As = > > dg(ui) dg(ugm) dg ik, tm)
{vi, v;}CV(G1) u;p,€V;(Ga)
ujm€V;(G2)

= ) N de (uik) de (ujm) de, (vis v5)
{vi, v;}CV(G1) €V, (Ga)
ujwnEVj(G2)

+2 ) S dglum) dg(umm) — Y > dg(uik) dg(ujm)

v;v; €E(G1) i €V;(Ga) viv; EEA(G1) u;p€Vi(Ga)
ujm €V;(Ga) wjm €V;(G2)
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= Z dcl (vi, vk) Z [dcl (vi) + d02 (ur)] [dG1 (v5) + dG2 (um)]
{vi,v;}CV(G1) u;ik €Vi(G2)
ujm €V (G2)

+2 Z Z [dG1 (1)1) + dG2 (uk)] [dcl (vj) + d02 (um)]
R A
- Z Z [dGl (vi) + dG2 (ur)] [dcl (v;) + dc;2 (um)]

vivj EEA(G1) u;p €V, (Ga)
Ujm EVj(G2)

= > g, (i, ve) {n3dg, (0)dg, (0)) + 2nama(dg, (v:) + dg, (v5)) + 4m3 }
{vi,v; }CV(G1)

w2 3 e, (), (v5) + 2nama (dg, (v0) + dg, (v;)) + 4m3 |
viv; EE(GY)

= > e, (w)de, (v) + 2nama (de, (v1) + do, (4)) +4m3 |

v;v; EEA(G1)
= n3Gut(G1) + 2namaDD(Gy) + 4m3W (G1) + na(2Ma(Gy) — Ta(G1))
+ 2n2ma(2M1(G1) — Th(G1)) + 4m3(2m1 — |Ea(G1))). (2.14)

A= ) D7 dg(uiy) dg(vr) dg, (vi, ve) 2 Y dg(uy) de (v)
vi€VI(G1) | u;j€V;(Ga) u;; €V;(G2)
v EV(G1)
Vi FEVE

v, €V(G1) v €EVI(G1)

=(n2+1) Y { > dg, (i, w) dg, (k) (2mz2 + 2 dg, (vi))

+2 (nad?, (v) + 2ms dg, (v:)) }

= 2(712 + 1)(m2DD(G1) + nzGUt(Gl) =+ nle(Gl) =+ 4m1m2). (2.15)

Using (2.12), (2.13), (2.14) and (2.15) in (2.11), we obtain the required result. m

Corollary 2.15 If G is a triangle free graph, then the Gutman index of G = G1 * Ga is given
by

Gut(G) = (2ng + 1)2Gut(G1) + 2ma(2n2 + 1)DD(G) + 4m3aW (G1)
—(n1 + 2m1)M1 (Gg) — nlMg(Gg) + (TLQ(?)?’LQ +4my+1) — mz)Ml (Gl)
+ 2n2 Mo (G1) + 8myma[2ns + ma) + 4nym3.

Corollary 2.16 If Gy = H,V Hs (join of two connected graphs Hy and Ho with |V (Hy)| = 2),
then the Gutman index of G = Gy x Go is given by
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Gut(G) = (2n2 + 1)*Gut(G1) + 2ma2(2ny + 1)DD(Gy) + 4m3W (Gy)
—(n1 + 2m1)M1 (Gg) — nlMg(Gg) + (TLQ(?)?’LQ +2mgy+1) — mg)Ml (Gl)
+n2My(G1) + dmyma[dng + ms] + 4nym3.

Lemma 2.17([8]) Let P, and C,, denote the path and the cycle on n vertices, respectively.
Then

Gut(P,) = (n—1)(2n* —4n + 3)/3
and

n?/2, if n is even,
Gut(C,) =
n(n? —1)/2, if n is odd.

Applying Lemmas 2.7, 2.12 and 2.17 in Theorem 2.14, we obtain the following corollary.

Corollary 2.18 (1) For n,m > 3, Gut(P, * P,,) = (6n® — 12n% + 74n — 86)m? — (6n? + 62n —
60)m + 43n — 27;

(2) Gut(Cap * Cpy) = 4n(9Mm3n? + 6mn? + 32m? + n? — 8m);

(3) Forn # 1, Gut(Cany1 % Cpy) = 2(2n+ 1)(9m3n2 + 9m?n + 6mn? + 32m?2 + 6mn +n? —
8m +n);

(4) Forn # 1, Gut(Copni1 * Pp) = 2(2n + 1)(9m2n? + 9m?n + 32m?2 — 36m + 21);

(5) Gut(Cay, x Pp) = 4n(9m3n? + 32m? — 36m + 21);

1

(6) Gut(Pn # Cm) = 6(m +1/3)°n® — 2((36m? + 30m + 6)n” + (222m® — 18m + T)n) —

86m? 4 4m — 1.
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81. Introduction

A simple graph is a pair G = (V, E), where V = V(G) and E = FE(G) are the sets of vertices
and edges of G, respectively. A path is a walk that does not include any vertex twice, except
that its first vertex might be the same as its last. A path with length n denotes by P,. In a
graph G, the distance between two distinct vertices x and y, denoted by d(z,y), is the length
of the shortest path connecting = and y, if such a path exists: otherwise, we set d(z,y) = oo.
The diameter of a graph G is diam(G) = sup{d(x,y) : xand y are distinct vertices of G}. A
walk is an alternating sequence of vertices and connecting edges. Also, a cycle is a path that
begins and ends on the same vertex. A cycle with length n denotes by C,. A graph G is said
to be connected if there exists a path between any two distinct vertices, and it is complete if it
is connected with diameter one. We use K, to denote the complete graph with n vertices. For
a positive integer r, a complete r-partite graph is one in which each vertex is joined to every
vertex that is not in the some subset. The complete bipartite graph with part sizes m and n
is denoted by K, . The graph K; ,_; is called a star graph in which the vertex with degree
n — 1 is called the center of the graph. For any graph G, we denote

Nlz] ={y € V(G) : (z,y) is an edge of G} U {x}.

Recall that the projective dimension of an R-module M, denoted by pd(M), is the length
of the minimal free resolution of M, that is,

1Received February 19, 2016, Accepted November 16, 2016.
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pd(M) = max{i | 5; ;(M) # 0 for some j}.

There is a strong connection between the topology of the simplicial complex A and the
structure of the free resolution of K[A]. Let 3;;(4A) denotes the N-graded Betti numbers of
the Stanley-Reisner ring K[A]. To any finite simple graph G with the vertex set V(G) =
{z1,-+ ,zn} and the edge set F(G), one can attach an ideal in the Polynomial rings R =
K[z1,- -+ ,zy] over the field K, whose generators are square-free quadratic monomials z;y; such
that (z;,y;) is an edge of G. This ideal is called the edge ideal of G and will be denoted by
I(G). Also the edge ring of G, denoted by K(G) is defined to be the quotient ring K(G) =
R/I(G). Edge ideals and edge rings were first introduced by Villarreal [11] and then they have
been studied by many authors in order to examine their algebraic properties according to the
combinatorial data of graphs. The most important Algebraic objects among these are Betti
numbers and positive dimension. The aim of this paper is to investigate the above mentioned
algebraic properties of (G);, where (G); is a graph such that to every vertex adds 7 pendent
edges. In this paper, we denote S, for a star graph with n 4+ 1 vertices.

82. The Projective Dimension of Some Graphs

In this section, we study the projective dimension of some graphs. We begin this section with
the following results.

Proposition 2.1([6], Proposition 2.2.8) If G is the disjoint union of the two graphs G1 and
Ga, then pd(G) = pd(G1) + pd(Ga).

Corollary 2.2([6, Corollary 2.2.9]) Let components are Gy,---,Gp. Then the projective
dimension of G is the sum of the projective dimensions of G1,- -+ , Gy, i.e pd(G) = T pd(G;).

Throughout this section, v will denote a vertex of 7" which has all but at most one of its
neighbours of degree 1 ( and if it has exactly one neighbour then that neighbour also has degree
1 ). The neighbours of v will be denoted vy, -+, v, such that vy,---,v,_1 all have degree 1.
Also the neighbours of v,, other than v will be denoted by wy, -« , w,.

Let T denoted a forest and let 7" denote the subgraph of T" which is obtained by deleting
the vertex vy and let 7" denote the subgraph Of 7" which is obtained by deleting the vertices
v,v1, -+ , 0. Thatis, T = T\ T{v} and T = T\{v,v1,--,v,}. Note that T and T" must
both be forests.

Theorem 2.3([6, Theorem 9.4.17)) Let p = pd(T), p = pd(T") and p” = pd(T"). Then

projective dimension of the forest T is equal to p = max{p,, p” +n}.

Theorem 2.4([6, Theorem 4.2.6]) If G is a graph such that G is disconnected, then pd(G) =
[V(G)| — 1.

Lemma 2.5([3, Lemma 3.2]) Let x be a vertex of a graph G. Then pd(G) < max{pd(G —
N[x]) + deg(x),pd(G — {x}) + 1}.
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Lemma 2.6([3, Observation 4.5]) The mazimum size of a minimal vertex cover of G equals
BigHeight(1(G)).

In the following proposition, we investigate the projective dimension of graph G such that

G is the graph obtained from S,, by adding ¢ pendant edges to each vertex.

Proposition 2.7 If G is the graph obtained from S, by adding i pendant edges to each verter,
then pd(G) = ni + 1.

Proof Let the set {ug,u1,---,un} be vertex set of S, and the set {u;,,u;,,- -+ ,uj} be
the leaves the adjacent with vertex u; for 0 < j < n. Then, by Theorem 77, we have

pd(G) = max{pd(G - {ul})vpd(G - {ullaulza s, Uy, U, uO}) +i+ 1}
Also, Theorem 2.4 and Corollary 2.2,

pd(G — {ui,, w1y, -+ ur,, ur,uol) +i+ 1} = (n— 1)i.
By reusing of Theorem 2.3,
pd(G — {u1, } = max{pd(G — {u1,,u1,}),ni}.
So we have,

pd(G) = max{pd(G — {u1,,u1,}),ni + 1}.

Continuing this process we have,

pd(G) = max{pd(G — {u1,,u1,, - ,u1,}),ni+ 1}.

Now, let G; = G — {u1,,u1,, - ,u1, }- Then with the use of Lemma 2.5, we obtain,
pd(G1) < max{pd(G1 — Nug]) + deg(uo), pd(G1 — {uo}) + 1}.
Since pd(G1 — Nug]) =0, deg(up) = n + i, we have,

pd(G1) < max{mi+mn,(n—1)i+ 1}.

Hence pd(G) = ni + 1. This completes the proof. |

In the next proposition, we study the projective dimension of graph G such that G is the
graph obtained from K,, ,, by adding ¢ pendant edges to each vertex.

Proposition 2.8 If G is the graph obtained from K, , by adding i pendant edges to each
vertex, then pd(G) = max{mi + n,ni + m}.

Proof We do proof by induction on n. Suppose that n = 1 and m > 1. Then by Proposition
2.7, we have, pd(G) = max{mi + 1,i + m} = mi + 1. Now, we may assume that n > 1 and
m > 1. Also, let the result is true for each K, ; and k£ < n. Since the sets
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{.%'1,.’[]2,"' sy s Yl Yles YL s Ymay s Ymay 70 7ym¢}7
and
{y17y27"' sy Ymy L1y Llgy " 3T " 3Ty Lngs """ ,JI»,”},

are the two minimal vertex cover of maximal size. By the proof Lemma 2.6, we have

pd(G) > Bight(I(G)) = max{mi + n,ni + m}.

On the other hand, by Lemma 2.5, we obtain

pd(G) < max{pd(G — N[z1]) + m + i,pd(G — {x1}) + 1}.

Now, by Corollary 2.2, pd(G — N[x1]) = (n — i), and so by induction hypothesis,
pd(G — {x1}) = max{mi + (n — 1), (n — 1)i + m}.
Therefore
pd(G) = max{ni+ m,max{mi+ (n —1),(n —1)i +m}}
= max{mi+ n,ni + m}.
Hence the result holds. |

Corollary 2.9 If G is the graph obtained from S, ® S,, by adding i pendent edges to each
vertex, then

pd(G) = max{(mn +m)i+n+1,(mn+n)i+m+ 1}

for m,n > 1. In particular, pd(S, ® S,,) =mn+m+n — 1.

Proof Since S, ® Sy, = Spn U Ky, we have for i > 1, (S, @ Spm)i = (Smn)i U (Kimn)i-

)

So by Corollary 2.2, Propositions 2.7 and 2.8, the result holds. O

Lemma 2.10([4, Lemma 5.1]) Let I be a squar-free monomial ideal and let A be any subset of the
variables. We relabel the variables so that A = {x1,--- ,x,}. Then either there exists a j with
1 <j < such that pd(S/I) = pd(S/(I,x1, - ,xj—1) : x3) or pd(S/I) = pd(S/(I,x1, - ,xi).
Lemma 2.11 Let x be a vertex of a G. Then we have

(1) pd(G) = pd(G —{z}) + 1 or pd(G — Nz]) + deg(z);

(2) If pd(G — Nlz]) + deg(z) > pd(G — {z}) + 1, then pd(G) = pd(G — N|z]) + deg(x).

Proof (1) By the proof of Lemma 2.5, we have
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) — pd(G — Nz]) + deg(z),
and

pd (W) = pd(G — {z}) + 1.

Also, by Lemma 2.10, we have

w16 =i () o P19 =i (g )

Hence the result part (1) holds.
(2) If pd(G — Nlz]) + deg(z) > pd(G — {z}) + 1, then by Lemma 2.5, we have, pd(G) <
pd(G — NJz]) + deg(x). Now, we consider the following short exact sequence
R R R

00— — — — 0

(L(G):z)  I(G) (1(G), x)

R R
Therefore, pd(G) = pd (@) > pd (m) = pd(G — Nlz]) + deg(z). Hence the

result holds. O

In the following proposition, we investigate the projective dimension of graphs G and H
such that G and H are graphs obtained from P, and C,, by adding ¢ pendant edges to each
vertex, respectively.

Proposition 2.12 If G and H are graphs obtained from P, and C, by adding i pendant edges
to each vertex, then

W pd@) =[5+ 5]

? 12 +1
n i—i—n if nis odd,
§i+§ if nis even.

Proof (1) we do proof by induction on n. If n = 2, then G is the double star graph (s1);.
By Example 2.1.17 in [6], we have pd(G) = i+ 1. For n = 3, let G be the graph shown in Figure
1. Then pd(G — {z}) = pd(P2); = pd(s1); =i+ 1.

x11 yll
i
:1711-/ Y1, /

Figure 1

J,'ll

z
\;h
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Also we have, pd(G — N[z|) = pd(s;) = i. Hence pd(G — N|[z]|) + deg(z) > pd(G — {z})+1,
and so by Lemma 2.11, pd(G) = pd(G — N|[z]|) + deg(z) = 2i + 1. Now, let n > 4 and suppose
that for each P, of order less that n the result is true. Let G be the graph shown in Figure 2.

X1, T2,
T ;2
T, / ﬂizi/
Figure 2

By the inductive hypothesis, we obtain

PG~ o)) =P = |54 | 25

and

pd(G — Niz1]) = pd(Po_s)i = {" > 2} i+ V _ QJ .

Hence by Lemma 2.11, the proof is complete.
(2) First, Assume that n is a odd number. Then H — {z1} = (P,_1);, and so H — N[x;] =
(Py—3);. If follows from part (1) and Lemma 2.11,

pd(H) = pd(H—{x1})+1=pd(P,-1)i+1
S ey RS A S
N 2 2 22
or
pd(H) = pd(G— N[z1]) + deg(z1) = pd(Pn—3)i + i+ 2
B n—3 - n—3 +_+2in_+n
- 2 |" 2 tTeT ot Ty
Hence the result hold. O

§83. The Betti Number of Some Graphs

In this section, we study the Betti number of two special graphs. We begin this section with

the basic facts and the following results.
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A simplicial complex /\ over a set of vertices V = {x1,--- ,x,} is a subset of the powerset
of V' with that property that, whenever F' € A and G C F', then G € A. The elements of A are
called faces and the dimension of a face is dim(F') = |F| — 1, where |F| is the cardinality of F.
Faces with dimension 0 are called vertices and those with dimension 1 are edges. A maximal
face of A with respect to inclusion is called a facet of A and the dimension of A, dim(A), is
the maximum dimension of its faces. If /A has an only facet, then it is called a simplex. Let A
and A’ be two simplicial complexes with vertex sets V and V', respectively. The union AU A/
defines as the simplicial complex with the vertex set VUV’ and F is a face of A U A’ if and
only if F' is a face of A or A/, If VNV’ = (, then the join A x A’ is the simplicial complex on
the vertex set V U V'’ with faces F'U F’, where F' € /A and F’' € /\’. The cone of A\, denoted
by cone(A), is the join of a point {w} with A, that is, cone(A) = A x {w}. If F' € A, then we
define xp = l,,epz; € R = Klz1,- -+, x,] for some field K. The Stanley-Reisner ideal of A,

denoted by Ia is In = (zp | F ¢ A) and the Stanley-Reisner ring of A is K[A] = Iﬂ Let
A
Bi,;(A) denotes the N-graded Betti numbers of the Stanley-Reisner ring K[A]. one of the most

well-known results is the Hochster’s formula.

Theorem 3.1([9, Hochster’s formulal) Fori > 0, the N-graded Betti number 3; ; of a simplicial
complex /\ are given by

Bij(D)= X dimg Hj—io1(Dw, K).
WCV(A),|lw|=j

Lemma 3.2([9]) Let A1 and Az be two simplicial complezes with disjoint vertex sets having m
and n vertices, respectively. Also, let N = Ay U Ag. Then the N-graded Betti numbers (3; ¢(2\)
can be expressed as

d—2
Zo{ﬁi—j,d—j(ﬂl) + Bizja—i(D2)} if d#i+1,
J:

d—2 d—1

2 Bimja—s(Br) + Bija—g (D)} + X if d=it L.
J:

Jj=1

Lemma 3.3([9]) Let G and H be two simple graphs whose vertex sets are disjoint. Then

Nasg = Ng U Ay is the disjoint union of two simplicial complezes.

Lemma 3.4([6]) If H is the induced subgraph of G on a subset of the vertices of G, then
Bia(H) < Bi,a(G) for all i.

Proposition 3.5([11, Proposition 5.2.5]) If A is a simplicial complex and ecn(A) = w x A its
cone, then

for all p.

In the following theorem, we find a lower bound for the Betti number of graph (K, »);.
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Theorem 3.6 Let G = (K,,n)i- Then

Gi(G) > max{ >

GHk=l+1

’ Z }

)

mi+n m ni+m n

J k jtk=t+1 \ j k

Proof Suppose that X = {z1, - 2} and Y = {y1, - ,yn} be two parts of graph

K. Also, let X, = {xp,, -,z } and Ys = {ys,, -, ys; } be the leaves, which are adjacent
to x, and ys, respectively for 1 < r < mand 1 < s < n. Now, let G; = (Kp,,); — UY;.
Then it is easy to see that AG; = A; U Ay such that Ay = ({x1, -,z }), and As =
Y1, Uns T1gy s s @1, s Ty 5 Ty ). Since Ap and Ag are simplexes, we have by
Proposition ??, H;(A1,K) = Hy(A2,K) = 0 for all field K. Now, let W # 0. If W C V(Aq)
or W C V(As), then Ay is a simplex. So for all 4, I_NIZ-(AW,K) = 0. Therefore, Suppose that
WNV(AL) #0and WNV(As) # 0, and so Ay is a simplicial complex with two connected.
Thus for all j, we have,

0 Jj#0,

H;(Aw,K) = ,
K 7=0.

If d =141, the by Hochster’s formula, we have

Bra(G1) = > dim H(Aw,K) = > 1
WCV(A),|W|=d WCV(A),|W|=d
B mi+n m n mi—+n m
1 l 2 -1
mi+n m
+ N
l 1
B Z mi+n m
=il \ J k
Therefore
[V(G1)l mi+n m
Gi(G1) = 3 BralGh)= > ,
d=1 jHk=l+1\ j k
mi+n m
It follows by Lemma 3.4, 5(G) > > with using an argu-
JHk=l+1\ j k
mi+n m
ment similar, we can see that 5(G) > > . This completes the
jtk=t+1\ j k

proof. O
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As an immediate consequence of the preceding result, we obtain.

Corollary 3.7 Let G = (S,);. Then

ni+ 1 n n+1
Bi(G) =z max{ >’ : }-
JHk=l+1\ j k l
Proof With assume that m = 1, the result follows from Theorem 3.5. a
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Abstract: In a connected graph G(V, E), a set S C V is said to be a k-resolving set of
G, if for every pair of distinct vertices u,v € V — S, there exists a vertex w € S such that
|d(u, w) — d(v,w)| > k for some k € Z*. Among all k-resolving sets of G, a set having
minimum cardinality is called a k-metric basis of G and its cardinality is called the k-metric
dimension of G, denoted by Br(G). In this paper, we characterize graphs with prescribed

k-metric dimension. We also extend some of the earlier known results on metric dimension.
Key Words: Metric dimension, k-metric dimension, landmarks.

AMS(2010): 05C12

81. Introduction

All graphs considered in this paper are simple, finite, undirected and connected. A vertex
w € V(G) is said to resolve a pair of vertices u,v € V(G) if d(u, w) # d(v,w). A set S C V(G)
resolves G if every pair of distinct vertices of G is resolved by some vertex in S. Further, the set .S
is called a resolving set of G. In other words, a resolving set of G is a set S = {w1, wa, ..., w;} of
vertices in G such that for each u € V(G), the vector r(u|S) = (d(u,w1),d(u,ws),- - ,d(u,w;))
uniquely identifies u. The k-vector r(u|S) is called the metric code, S-location or S-code of
u € V(G). A resolving set of minimum cardinality in a graph is called a minimum resolving
set or metric basis, the elements of which, are called landmarks. The metric dimension of G,
denoted by B(G), is the cardinality of a minimum resolving set in G.

The concept of resolving sets for a connected graph was introduced in the year 1975 by
Slater [15] using the term locating set. He called the minimum resolving set a reference set
and the cardinality of a reference set the locating number of the graph. In fact, resolving sets
were studied much earlier in the context of the coin-weighing problem [3, 4, 8]. In the year
1976, Harary and Melter [11] independently introduced these concepts, however, under different

terminologies. They used the term metric dimension instead of locating number. Since then,

1Received January 25, 2016, Accepted November 18, 2016.
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a significant amount of work has been carried out on resolving sets [2, 18, 23, 21, 17, 19, 7, 12,
25]. Also, there have been many instances where the concept of resolving sets has arisen, some
of which include navigation of robots, solution of the Mastermind game and network discovery
& verification.

The following are some of the results on metric dimension obtained by various authors and

are used for immediate reference in the subsequent sections of this paper.

Theorem 1.1([Khuller, Raghavachari and Rosenfeld, [13]) For a simple connected graph G,
B(G) =1 if and only if G = P,.

Theorem 1.2([Harary and Melter [11]) For any positive integer n, 3(G) = n — 1 if and only
if G2 K,.

Theorem 1.3(Chartrand, Erwin, Harary and Zhang [6]) If G is a connected graph of order n,
then B(G) < n — diam(QG).

Lemma 1.4 For any connected graph G on n vertices which is not a path,

2 < B(G) < n —diam(G).

In this paper, we establish certain bounds on k-metric dimension S (G), introduced by
Sooryanarayana [22], as a generalization of metric dimension. Further, we obtain a bound
on the degree of a vertex and order of a graph in terms of its k-metric dimension. We also
characterize graphs G with §;(G) = k.

82. k-Metric Dimension

The k-metric dimension (;(G) was introduced by Sooryanarayana in [22] as a generalization
to metric dimension. In particular, some work was carried out by Geetha and Sooryanarayana
[24] for k = 2.

Definition 2.1 Let G(V, E) be a connected graph and I,k € ZT with k <1. A subset S of V is
said to be a (1, k)-resolving set of G, if for every u,v € V — S and u # v, there exists a vertex
w € S with the property that k < |d(u,w) — d(v,w)| < 1. Further if | = diam(G), then every

(1, k)-resolving set is simply called a k-resolving set.

Definition 2.2 A k-resolving set S is said to be a minimal k-resolving set if none of its proper
subsets is a k-resolving set. Further a minimal k-resolving set of minimum cardinality is called
a lower k-metric basis or simply a k-metric basis of G and is denoted by Sy and its cardinality

is called the k-metric dimension of G and is denoted by B (G).
Some of the results that follow directly from the above definition are stated below.

Remark 2.3 For any graph G on n vertices, 1 < B;x(G) < n —1 for all k € ZT. Further, if
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k > d, the diameter of G, then (5, (G) =n — 1.

Remark 2.4 For k = 1, the k-metric dimension is same as metric dimension of a graph and
for k > 2, it follows that 8x(G) > B(G). Further, as 1 < 8(G) < Bx(G) < |V(G)], it follows for
any integer k > 1 that 8 (K,) =n — 1 whenever n > 2.

Lemma 2.5 For any integer k > 1, if S is a k-resolving set of a connected graph G and v € S,

then V — S has at most one pendant vertex adjacent to v.

Proof If two or more pendant vertices are adjacent to v, then for each vertex w € S the

distance from these vertices is identical. Hence S will not resolve these vertices. O

Lemma 2.6 For any connected non-trivial graph G and an integer k > 2, if S is a k-resolving
set of G, then d(xz,y) > k for any two distinct vertices z,y € V — S.

Proof Suppose, to the contrary, that d(z,y) < k — 1 for some z,y € V- S. Let w € S
be arbitrary. Without loss of generality, we assume that d(z,w) > d(y,w). Then by triangular
inequality, we have d(z,w) < d(z,y) + d(y,w) = d(z,w) — d(y,w) < d(z,y) < k-1, a
contradiction since w is arbitrary. a

If S, is a k-metric basis for a graph G with |V — Si| > 1, then, by Lemmas 2.5 and 2.6, it
follows that

1. V — Sk is an independent set and Sy is a dominating set.

2. At least k — 1 vertices in any shortest path between two distinct vertices of V' — S, are in
Sk.

3. The cardinality of Sy is at least k — 1, i.e., Br(G) > k — 1.
4. n—i(G) < Br(G) < n — 1, where i(G) denotes the independence number of the graph G
5. Y(G) < Bi(G), where v(G) is the lower domination number of G.

Combining the above results, we have
Lemma 2.7 For any k € Z© and a connected non-trivial graph G on n vertices,

k—lgﬁk(G)Sn—l.

The following result shows the cases where the lower bound in Lemma 2.7 is attained.

Theorem 2.8 For any connected non-trivial graph G of order n and an integer k € ZT,
Bk(G) =k — 1 if and only if n = k.

Proof Let Sy be a metric basis with |Si| = k(G) = k — 1. Then, as 6;(G) < n —1, it
follows that n > k. If n > k, then there exist at least two vertices z,y € V — Si. But then,

the second condition stated above implies that < S >2 P,_1 and z is adjacent to one of the
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end vertices of < S > and y is adjacent to the other. Hence |V — S| = 2 and G = Py;.
This shows that diam(G) = k = |d(z,w) — d(y,w)| < k for any w € Sk, a contradiction.
Thus, n = k. The converse follows immediately from Remark 2.3 by noting the fact that
k=n>n—12diam(G). O

Corollary 2.9 For any connected graph G and any integer k > 2, B(G) = 1 if and only if
G = K.

The following result is an extension of Theorem 1.2 and shows the cases where the upper
bound in Lemma 2.7 is attained.

Theorem 2.10 For any connected non-trivial graph G on n vertices and any integer k > 1,
Bik(G) =n —14f and only if diam(G) < k.

Proof For k = 1, the result follows by Theorem 1.2. Suppose that & > 2 and let G be a
connected non-trivial graph on n vertices with 3;(G) = n — 1. Assume, to the contrary, that
diam(G) > k+1. Then there exists a pair of vertices u,v € V such that d(u,v) = k+1. Let P :
u—2x1—ra—- - -—xp—v be a shortest path from u to v. Let S =V —{x1,v}. Then V-5 = {z1,v}
and for these z1,v € V — 5, the vertex u € S is such that d(u,v) —d(u,z) = (k+1)—1 = k. So,
S is a k-resolving set of G and hence ;. (G) < |S| = n—2, a contradiction. The converse follows
from the fact that for any three distinct vertices z,y and v in G, |d(z, u) —d(y,u)| < k—1 since
diam(G) < k. O

Remark 2.11 From Theorem 2.10, it follows for any k£ > 2 that the k-metric dimension of the
graphs on n vertices such as, Petersen graph, complete p-partite graphs for any p,2 < p < n,
H + K, for any graph H on n — 1 vertices, etc., is n — 1.

83. Bounds on Order of a Graph and Degree of a Vertex in Terms of

k-Metric Dimension

In this section, we present some bounds on the order of a graph and degree of a vertex in a

graph in terms of its k-metric dimension.

Theorem 3.1 For any connected non-trivial graph G of order n and an integer k > 3, if

k+1 k+2
Br(G) =m, thenm—l—lgngm(k——i_l)—i—lforoddk andm—l—lgngm(%)—i—lfor

even k.

Proof The lower bound follows from Lemma 2.7. To establish the upper bound, consider a
k-metric basis Sy, for G with |Si| = m. Then, V -}, is totally disconnected and |V —Sj| = n—m.
Since G is connected, by Lemma 2.6, the length of a shortest path between any two vertices
u,v € V — S should include at least k& — 1 vertices of S} such that none of them is adjacent
to any other vertex in V' — Si. Thus, for n — m vertices in V — Si, we must have at least
(n—m— 1) | 52| distinct vertices in S. O
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Remark 3.2 The above theorem need not be true for the case £ = 2. For instance, for the

graph shown in Figure 1, the set So = {w1, ws, w3} is a metric basis with m = 3 and n = 8.

W W, Ws
X X, X3 Xy X

Figure 1 A graph G on 8 vertices with §2(G) = 3

Theorem 3.3 For any connected non-trivial graph G of order n, if 52(G) = m, then m+ 1 <
m(m + 3)
ST 3

Proof The lower bound follows from Lemma 2.7. For the upper bound, let Sy be a k-
metric basis for G with |Sy.| = m with w1, wg,- -+, wy, being the vertices in Sy. Let Ng, (w;)
denote the set of vertices in V' — Sj adjacent to the vertex w;, for 1 < j < m. Then for each
pair of vertices x,y € Ng, (w1), Sk should contain at least one vertex w; which is adjacent
to exactly one of these vertices (clearly w; # wp). Hence for the vertex w; € Sy, the set
S} should contain at least Ng (wi) — 1 new vertices other than w;. This is possible only if
Ng, (w1) < m. We now define N(w;) recursively as (i) N(w;) = Ng, (w1) and (ii) for j > 2,
N(wj) = Ng, (wj) — Ng, (wj—1). Then, for each pair of vertices in x,y € N(wz), we require
at least N(wy) — 1 vertices in S — {w1,wa} adjacent to exactly one of these vertices (since
N(wy) N N(wg) = 0). This is possible only if N(w2) < m — 1. Continuing the same argument,
we get, for each 1 < j < m, that N(w;) < m — j + 1. Further, since the graph G is connected
and the set V' — Sy, is independent, the way N(wj;) is constructed implies that

|v-sk|=;zv<wj>=z<m—j+1>=M. 0

j=1

Lemma 3.4 For any integer k > 2 and a k-resolving set S of a graph G of order n with
S| < n—2, if v €S is avertex that lies in a shortest path between two vertices x and y in

V — S, then deg(v) < |S| — k + 2.

Proof We prove the result in two cases based on whether v is adjacent to any vertex in
V — S or not.
Case 1. z (similarly y) is a vertex adjacent to v.

In this case any shortest xy-path P should contain at least k — 1 vertices of S for any other
vertex y € V — S. Such a vertex y exists as |V — S| > 2. Further, we note that exactly two
vertices in P are adjacent to v.

Subcase 1 P contains exactly & — 1 vertices of S.

In such a case, v is adjacent to at most |S| — (k — 1) vertices of S — P. Further if v is
adjacent to exactly |S| — k+ 1 vertices of S — P then no vertex w € S will resolve x and y since

in this case d(z,y) = k and d(z,w) = 2, d(y,w) < k. Hence v is adjacent to at most |S| — k
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vertices in S — P. Now if v is adjacent to any other vertex in z € V — S, then k = 2 since
d(x,z) = 2. Thus, in order to resolve x and z, we require a vertex w € S non adjacent to v.
This shows that v is adjacent to a vertex in V — .S only by being non-adjacent to a vertex in S.
Thus deg(v) < |S| —k + 2.

Subcase 2. P contains more than k& — 1 vertices of S.

In this case v is adjacent to at most |\S| — k vertices of S not in P and the vertex adjacent
to y in P will resolve z and y. Hence deg(v) < |S| — k + 2.

Case 2. v is not adjacent to any vertex in V — S.

In this case v is adjacent to exactly two vertices in P and at most |S| — (I(P) — 1) vertices
in S — P. However, as discussed earlier, if v is adjacent to exactly |S| — (I(P) — 1) vertices in
S — P, then no vertex in S will resolve x and y unless I(P) > k, which implies that deg(v) <
S| —k+2=|S|—k+2. |

Lemma 3.5 For any integer k > 2 and a k-resolving set S of a graph G of order n with
S| <n—2,ifveES is avertex not in any shortest path between any two vertices x and y in

V — S, then deg(v) < |S| —k + 1.

Proof The vertex v is adjacent to at most two adjacent vertices in a shortest path P
between two vertices z and y in V' — 5. Otherwise, v lies in a shortest xy-path or P will not

remain a shortest path.
Case 1. v is adjacent to two adjacent vertices u; and ug in P.

In this case no vertex z € V — S is adjacent to v. Otherwise, it is easy to observe that
v lies in a shortest path between x and z which is not possible. Also, neither v nor any
vertex vy adjacent to v will resolve x and y whenever [(P) < k. Without loss of generality,
let d(z,v) > d(y,v) and u; be nearer to & than ug. Then d(x,v) > d(x,u1). If not, extending
zv-path to us and then from wus to y along P yields an xy-path containing v that has length
at most that of P, a contradiction. Also d(z,v) < d(z,u1) + 1 as v is adjacent to u; which
implies that d(x,u1) < d(z,v) < d(x,uy)+ 1. Similarly d(y, uz) < d(y,v) < d(y,u2)+ 1. Hence
d(@,v) — dy,v)| < ld@,w) + 1 - dly,uz)| = |d(@,us) — dly,uz)| = |d(@,uz) + d(y, us) -
2d(y,u2)| = [I(P) — 2d(z,u2)| = [I(P) — 2| = k — 2 < k, a contradiction. Similarly we can show
that vy will not resolve & and y. Thus, I(P) > k + 1 so that v is adjacent to two vertices in P
and at most |S| — k — 1 vertices of S — V(P). Hence deg(v) < |S] — &k + 1.

Case 2. v is adjacent to at most one vertex u; in P.

In this case v can be adjacent to at most |S| — k elements of S — V(P). Further, if v is
adjacent to any vertex in V — S, then £ < 4. When k£ = 3 or 4 and v is adjacent to exactly
one vertex z € V — S, we require at least one vertex in S — V(P) not adjacent to v to resolve
each pair of vertices in {z,y,2z}. When k = 2 and v is adjacent to 21, 22,23, - ,2; in V — S,
we require 4 vertices in S not adjacent to v to resolve each pair in {x,y, 21, 22, -+, 2;}. Hence
deg(v) < |5 — k.

Thus, in each of the cases, we see that deg(v) < |S| —k + 1. O
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The following lemma is based on the fact that the set V' — S is an independent set and for

each z,y € V — S, d(x,y) > k, the vertex x cannot be adjacent to at least k — 1 vertices in S.

Lemma 3.6 For any integer k > 2 and a k-resolving set S of a graph G of order n with
S| <n—2,ifveV -85, then deg(v) < |S|—k + 1.

Summarizing the above results, we have the following theorem.

Theorem 3.7 For any integer k > 2 and a graph G of order n > k

A(G) < Br(G) — k +2.

In the following theorem, we establish a bound on the order of a graph in terms of its

k-metric dimension and diameter.

Theorem 3.8 Suppose G is a graph on n vertices with diameter d > 2 and metric dimension
Br(G) =m. Then

d—1
m
n<m+1+ S (d—i—k+1)mk
=1

N

Figure 2 A k-resolving set for the proof of Theorem 3.8.

Proof Let Si be a k-resolving set with |S — k| = m and z,y € V — S;. Then, as
d(z,y) > k, there are vertices w;, ,w;,, - ,w;, of Sy in a shortest xzy-path, where i; > k — 1.
The coordinates of the vertex = corresponding to these 7; vertices are respectively 1,2,...[ and
that of the vertex y are [,l — 1,---1. Hence these coordinates are fixed. Now, for any other
w; € Sk, if the coordinate of x corresponding to w; is I;, then, as d(z,y) > k, the difference
between [; and coordinate of y corresponding to w; should be at least k. Without loss of
generality we assume d(x,w;) < d(y,w;). Then, there are at most (d —I; — k + 1) possibilities
for the coordinate of y corresponding to the vertex w;, where 1 < I; < d. Thus, there are at

most
d—1

dd—i—k+1)mk

i=1
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possible vectors that can be assigned for the vertex y. Therefore

d—1
vosd<| " | Sd—i-k+1mt 0

i=1

84. Characterization of Graphs with (;(G) =k

S. Khuller et al. [13] in the year 1996, proved that 3(G) = 1 if and only if G is a path. In a
similar manner, we characterize classes of graphs for which 5(G) = 2 in this section. Further,

we establish a characterization of graphs with §;(G) = k.

Theorem 4.1 For a connected graph G, B2(G) = 2 if and only if G = Ps or Py or Ps or Cs.

Proof Let G be a connected graph such that §2(G) = 2 and S = {wy,wz} be a 2-metric
basis of G. Then, by Corollary 2.9, |V| > 3.

We first claim that |[V(G)| < 5. By Lemma 2.6, the set V — S is an independent set. So,
as the graph G is connected, every vertex in V' — S is adjacent to a vertex in S. If two or more
vertices in V — S are adjacent to both the vertices in S, then by Definition 2.2, we see that S
is not a 2-metric basis. Hence, at most one vertex can be adjacent to both the vertices in S.
Similarly, at most one vertex x € V' — S can be adjacent to one of the vertices wy or ws (since
if ,y € V— S are adjacent to wq, then, as S is a 2-metric basis, |d(z, ws) — d(y,w2)| > 2 which
is not possible because S is independent). Hence |V — S| < 3 and |V| < 5.

Suppose |V| = 3, then G is one of P; or C5 as G is connected. Similarly, if |V| = 4, then
by Theorem 2.10, diam(G) > 2 and hence G must be P;. In the case of |[V| = 5, we have
|V — S| = 3 and by the same argument, we see that at most one vertex can be adjacent to
either wy or we and at most one vertex can be adjacent to both w; and ws. If wy; and ws are
non-adjacent, then G is a path Ps. Else, as seen in Figure 3, for any vertex v € V — S, we have
1 < d(v,w;) <2, for each i = 1,2 and hence S is not 2-metric basis. Thus if |V| = 5, then G
must be a path.

Conversely, it is easy to verify that each the graphs Ps, Py, Ps and Cs has its 2-metric
dimension 2. This completes the proof. O

W, w,
Figure 3 Graph with (5(G) = 2

Theorem 4.2 For any integer k > 3, Br(G) = k if and only if G is a connected graph on k+1

vertices or G = Py o.
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Proof Let Si be a k-metric basis for G with |S;| = k. Then, by Theorem 3.1, we get

(k+2)(k—1)+1
k-1

1
:(k+2)+—k 1ék+1§n§k+2

k
k+1<n<k|—— 1=
+1<n< <k 1)+

(since k > 3) and hence |V — Sj| < 2.

Case 1. |V — S| =2.

Let V — S, = {z,y}. w € S} resolves z and y, and x; € S is adjacent to 2. Then the
only two possibilities are that (i) 21 = w and d(y,w) = k+ 1 or (ii) 1 # w and y is adjacent
to w (since |Sk| = k and d(z,y) > k). So, the graph in this case is Pyo.

Case 2. |V —S5i =1

In this case, |V(G)| = k + 1 and hence diam(G) < k. Thus, by Theorem 2.10, it follows
that G is any connected graph on k + 1 vertices for i (G) = k.

Conversely for a connected graph on k + 1 vertices we have diam(G) < k and hence by
Theorem 2.10, Bx(G) = (k+ 1) — 1 = k. Further, for any path on Pj,is vertices and any
k-resolving set Sy of Pyyo, the distance between any two vertices in V' — Sy, is at least k, which
implies that, |V — Si| < 2. Hence |Sk| > k.

Let {v1,va, -+ , Uk, k11, Ukt2 } be the vertices of the path Py such that v; is adjacent to
only v;41 for each i,1 <i < k+1. Consider the set Sy, = {va,v3, -+ , Uk, Vgt2}. V1, V541 are the
only vertices in V' — S that are k-resolved by the vertex vg4o in Si. Hence Sj is a k-resolving
set with |Sx| = k. Therefore B (Pit2) = k. O

Problem 4.3 Solve for G, the equation Oy (G) =k + 1 for all k < diam(Q).
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81. Introduction

For standard terminology and notation in graph theory we refer Harary [4] and Zaslavsky [40]
for signed graphs. Throughout the text, we consider finite, undirected graph with no loops or
multiple edges.

Within the rapid growth of the Internet and the Web, and in the ease with which global
communication now takes place, connectedness took an important place in modern society.
Global phenomena, involving social networks, incencitives and the behavior of people based on
the links that connect us appear in a regular manner. Motivated by these developments, there
is a growing multidisciplinary interest to understand how highly connected systems operate [3].

In social sciences we often deal with relations of opposite content, e.g., “love”’- “hatred”,
“likes” - “dislikes”, “tells truth to”-“lies to” etc. In common use opposite relations are termed
positive and negative relations. A signed graph is one in which relations between entities may
be of various types in contrast to an unsigned graph where all relations are of the same type.
In signed graphs edge-coloring provides an elegant and uniform representation of the various
types of relations where every type of relation is represented by a distinct color.

In the case where precisely one relation and its opposite are under consideration, then
instead of two colors, the signs 4+ and - are assigned to the edges of the corresponding graph in
order to distinguish a relation from its opposite. In the case where precisely one relation and
its opposite are under consideration, then instead of two colors, the signs 4+ and — are assigned
to the edges of the corresponding graph in order to distinguish a relation from its opposite.
Formally, a signed graph ¥ = (I',0) = (V, E,0) is a graph I" together with a function that
assigns a sign o(e) € {+, —}, to each edge in I'. ¢ is called the signature or sign function. In

such a signed graph, a subset A of E(T") is said to be positive if it contains an even number

1Received June 6, 2016, Accepted November 20, 2016.
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of negative edges, otherwise is said to be negative. Balance or imbalance is the fundamental
property of a signed graph. A signed graph ¥ is balanced if each cycle of X is positive. Otherwise
it is unbalanced.

Signed graphs ¥; and Y5 are isomorphic, written X7 = 3o, if there is an isomorphism
between their underlying graphs that preserves the signs of edges.

The theory of balance goes back to Heider [7] who asserted that a social system is balanced
if there is no tension and that unbalanced social structures exhibit a tension resulting in a
tendency to change in the direction of balance. Since this first work of Heider, the notion
of balance has been extensively studied by many mathematicians and psychologists. In 1956,
Cartwright and Harary [2] provided a mathematical model for balance through graphs.

A marking of ¥ is a function ¢ : V(I') — {+, —}. Given a signed graph ¥ one can easily
define a marking ¢ of ¥ as follows: For any vertex v € V(X),

Cwy= I otuv),

wveE(X)

the marking ¢ of ¥ is called canonical marking of 3.

The following are the fundamental results about balance, the second being a more advanced
form of the first. Note that in a bipartition of a set, V = V; U V5, the disjoint subsets may be
empty.

Theorem 1.1 A signed graph X is balanced if and only if either of the following equivalent

conditions is satisfied:

(1)(Harary [5]) Its vertex set has a bipartition V. = Vi U Va such that every positive edge
joins vertices in Vi or in Vo, and every negative edge joins a vertex in Vi and a vertex in Va;

(2)(Sampathkumar [13]) There exists a marking p of its vertices such that each edge uv in

T satisfies o(uv) = ((u)¢(v).

Let ¥ = (T', 0) be a signed graph. Complement of ¥ is a signed graph ¥ = (T', '), where for
any edge e = uv € T', o’ (uv) = ((u)((v). Clearly, X as defined here is a balanced signed graph
due to Theorem 1.1. For more new notions on signed graphs refer the papers (see [10-37]).

A switching function for ¥ is a function ¢ : V. — {4+, —}. The switched signature is
o¢(e) := ¢(v)o(e)((w), where e has end points v, w. The switched signed graph is ¥¢ := (£]c°).
We say that ¥ switched by (. Note that $¢ = £7¢ (see [1]).

If X CV , switching ¥ by X (or simply switching X) means reversing the sign of every
edge in the cut set F(X, X¢). The switched signed graph is . This is the same as X¢ where
¢(v) := — if and only if v € X. Switching by ¢ or X is the same operation with different
notation. Note that XX = %X°.

Signed graphs Y1 and Yo are switching equivalent, written 31 ~ X5 if they have the same
underlying graph and there exists a switching function ¢ such that Eg = ¥5. The equivalence
class of X,

] :={¥:¥ ~ 32},

is called the its switching class.
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Similarly, ¥; and X5 are switching isomorphic, written 31 = Yo, if ¥ is isomorphic to a
switching of ¥5. The equivalence class of X is called its switching isomorphism class.

Two signed graphs X1 = (I'1,01) and Yo = (T'2, 02) are said to be weakly isomorphic (see
[?]) or cycle isomorphic (see [?]) if there exists an isomorphism ¢ : 'y — 'y such that the sign
of every cycle Z in X1 equals to the sign of ¢(Z) in 3g. The following result is well known.

Theorem 1.2(T. Zaslavsky [39]) Two signed graphs %1 and 3o with the same underlying graph

are switching equivalent if and only if they are cycle isomorphic.

In [16], the authors introduced the switching and cycle isomorphism for signed digraphs.
In this paper, we initiate a study of the radial signed graph of a given signed graph and solve
some important signed graph equations and equivalences involving it. Further, we obtained the

structural characterization of radial signed graphs.

§2. Radial Signed Graph of a Signed Graph

In a graph I, the distance d(u,v) between a pair of vertices u and v is the length of a shortest
path joining them. The eccentricity e(u) of a vertex w is the distance to a vertex farthest from
u. The radius r(I") of T is defined by r(I') = min{e(u) : u € I'} and the diameter d(T") of " is
defined by d(I') = max{e(u) : u € I'}. A graph for which r(I") = d(T") is called a self-centered
graph of radius r(T"). A vertex v is called an eccentric vertex of a vertex w if d(u,v) = e(u). A
vertex v of I' is called an eccentric vertex of I' if it is an eccentric vertex of some vertex of T'.
Let S; denote the subset of vertices of I' whose eccentricity is equal to i.

Kathiresan and Marimuthu [8] introduced a new type of graph called radial graph. Two
vertices of a graph I' are said to be radial to each other if the distance between them is equal
to the radius of the graph. The radial graph of a graph I', denoted by R(I'), has the vertex
set as in I' and two vertices are adjacent in R(T") if, and only if, they are radial in T'. If T" is
disconnected, then two vertices are adjacent in R(T") if they belong to different components of
T. A graph T is called a radial graph if R(I") =T for some graph I".

Motivated by the existing definition of complement of a signed graph, we now extend the
notion of radial graphs to signed graphs as follows: The radial signed graph R(X) of a signed
graph 3 = (I', o) is a signed graph whose underlying graph is R(I") and sign of any edge uwv is
R(X) is ¢(u)¢(v), where ( is the canonical marking of ¥. Further, a signed graph ¥ = (T, 0) is
called radial signed graph, if ¥ = R(X’) for some signed graph ¥'. following result restricts the

class of radial graphs.

Theorem 2.1 For any signed graph ¥ = (T, 0), its radial signed graph R(X) is balanced.

Proof Since sign of any edge e = uv in R(X) is ((u){(v), where ( is the canonical marking
of ¥, by Theorem 1.1, R(X) is balanced. O

For any positive integer k, the k*" iterated radial signed graph, R*(X) of ¥ is defined as
follows:
RY(XZ) =¥, R*¥(Z) = R(RF1(%)).
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Corollary 2.2 For any signed graph ¥ = (I',o) and for any positive integer k, R*(X) is

balanced.

The following result characterize signed graphs which are radial signed graphs.

Theorem 2.3 A signed graph X = (T',0) is a radial signed graph if, and only if, ¥ is balanced
signed graph and its underlying graph T" is a radial graph.

Proof Suppose that ¥ is balanced and T is a radial graph. Then there exists a graph I such
that R(TY) 2 T'. Since X is balanced, by Theorem 1, there exists a marking ¢ of I' such that
each edge uv in ¥ satisfies o(uv) = ((u)((v). Now consider the signed graph ¥’ = (I”,07),
where for any edge e in I, ¢/(e) is the marking of the corresponding vertex in I'. Then clearly,
R(X') 2 X. Hence ¥ is a radial signed graph.

Conversely, suppose that ¥ = (T, o) is a radial signed graph. Then there exists a signed
graph 3’ = (I”,0”) such that R(X') = X. Hence, T is the radial graph of TV and by Theorem 3,
3’ is balanced. O

The following result characterizes the signed graphs which are isomorphic to radial signed

graphs. In case of graphs the following result is due to Kathiresan and Marimuthu [9].

Theorem 2.4 Let T' be a graph of order n. Then R(T') = T if, and only if, T is a connected
graph with r(T') = d(T) =1 or r(T') = 1 and d(T") = 2.

Theorem 2.5 For any connected signed graph ¥ = (T',0), ¥ ~ R(X) if, and only if, X is
balanced and the underlying graph T with r(T') = d(T') =1 or r(T') = 1 and d(T') = 2.

Proof Suppose R(X) ~ 3. This implies, R(I') =2 I" and hence by Theorem 2.4, we see
that the graph I' satisfies the conditions in Theorem 2.4. Now, if ¥ is any signed graph with
underlying graph being 7(I") = d(I') = 1 or #(I') = 1 and d(T") = 2, Theorem 2.1 implies that
R(Y) is balanced and hence if ¥ is unbalanced and its radial signed graph R(3) being balanced
can not be switching equivalent to ¥ in accordance with Theorem 1.2. Therefore, > must be
balanced.

Conversely, suppose that 3 balanced signed graph with the underlying graph I’ with »(T) =
d(T) =1or r(T') =1 and d(T") = 2. Then, since R(X) is balanced as per Theorem 3 and since
R(T") =T by Theorem 2.4, the result follows from Theorem 1.2 again. O

In [9], the authors characterize the graphs for which R(I') =T.

Theorem 2.6 Let I be a graph of order n. Then R(T') =T if, and only if, either So(T') = V(T)
or I' is disconnected in which each component is complete.

In view of the above result, we have the following result that characterizes the family of

signed graphs satisfies R(X) ~ X.

Theorem 2.7 For any signed graph ¥ = (I',0), R(X) ~ X if, and only if, either Sa(T') = V(I')
or I' is disconnected in which each component is complete.
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Proof Suppose that R(X) ~ X. Then clearly, R(I') = T. Hence by Theorem 2.6, T is either

S(T") = V(I') or disconnected in which each component is complete.

Conversely, suppose that ¥ is a signed graph whose underlying graph is either So(T") = V(T)
or I is disconnected in which each component is complete. Then by Theorem 2.6, R(T') = T.
Since for any signed graph X, both R(X) and X are balanced, the result follows by Theorem
1.2. |

The following result due to Kathiresan and Marimuthu [9]gives a characterization of graphs
for which R(T') ~ R(T).

Theorem 2.8 Let I' be a graph. Then R(I') ~ R(T) if, and only if, T satisfies any one the

following conditions:

(1) T or T is complete;
(2) T or T is disconnected with each component complete out of which one is an isolated

vertex.

We now give a characterization of signed graphs whose radial signed graphs are switching

equivalent to their radial signed graph of complementary signed graphs.

Theorem 2.9 For any signed graph ¥ = (I',0), R(X) ~ R(X) if, and only if, T satisfies the

conditions of Theorem 2.8.

The notion of negation n(X) of a given signed graph 3 defined in [6] as follows:

7(X) has the same underlying graph as that of ¥ with the sign of each edge opposite to
that given to it in 3. However, this definition does not say anything about what to do with

nonadjacent pairs of vertices in 3 while applying the unary operator 7(.) of taking the negation
of 3.

For a signed graph ¥ = (T',0), the E,(X) is balanced (Theorem 2.1). We now examine,
the conditions under which negation n(3) of Ej(X) is balanced.

Theorem 2.10 Let ¥ = (T, 0) be a signed graph. If R(T') is bipartite then n(R(X)) is balanced.

Proof Since, by Theorem 2.1, R(X) is balanced, if each cycle C' in R(X) contains even
number of negative edges. Also, since R(T") is bipartite, all cycles have even length; thus, the
number of positive edges on any cycle C in R(X) is also even. Hence n(R(X)) is balanced. 0O
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Abstract: For two vertices w and v of a connected graph G, the set I[u,v] consists of all
those vertices lying on u — v geodesics in GG. Given a set S of vertices of GG, the union of all
sets I[u,v] for u,v € S is denoted by I[S]. A convex set S satisfies I[S] = S. The convex
hull [S] of S is the smallest convex set containing S. The hull number A(G) is the minimum
cardinality among the subsets S of V with [S] = V. In this paper, we introduce and study the
geodesic irredundant number of a graph. A set .S of vertices of GG is a geodesic irredundant set
if u ¢ I[S—{u}] for all uw € S and the maximum cardinality of a geodesic irredudant set is its
irredundant number gir(G) of G. We determine the irredundant number of certain standard
classes of graphs. Certain general properties of these concepts are studied. We characterize
the classes of graphs of order n for which gir(G) = 2 or gir(G) = n or gir(G) = n — 1,
respectvely. We prove that for any integers a and b with 2 < a < b, there exists a connected
graph G such that h(g) = a and gir(G) = b. A graph H is called a maximum irredundant
subgraph if there exists a graph G containing H as induced subgraph such that V(H)
is a maximum irredundant set in G. We characterize the class of maximum irredundant

subgraphs.

Key Words: Interior vertex, extreme vertex, hull number, geodesic irredundant sets,

irredundant number.

AMS(2010): 05C12

81. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple
edges. The distance d(u,v) between two vertices 4 and v in a connected graph G is the length
of a shortest u - v path in G. An u - v path of length d(u,v) is called an u - v geodesic. It is
known that the distance is a metric on the vertex set V. The set I[u,v] consists of all vertices
lying on some u - v geodesic of G, while for S C V', I[S] = Uwes Ifu,v]. The set S is convex
if I[S] = S. The convex hull [S] is the smallest convex containing S. The convex hull [S]

1Received April 12, 2016, Accepted November 22, 2016.
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can also be formed from the sequence {I*[S]}, k > 0, where I°[S] = S, I'[S] = I[S] and
I¥[S] = I[I*=1[S]] for k > 2. From some term on, this sequence must be constant. Let p be
the smallest number such that IP[S] = IPT1[S]. Then I?[S] is the convex hull [S]. A set S of
vertices of G is a hull set of G if [S] =V, and a hull set of minimum cardinality is a minimum
hull set or h-set of G. The cardinality of a minimum hull set of G is the hull number h(G) of
G. To illustrate these concepts, consider the graph G in Figure 1.1 and the set S = {s,t,y}.
Since I[S] = {s,t,u,v,w,z,y} and I?[S] =V, it follows that S is a hull set of G. In fact, S is
a minimum hull set and so h(G) = 3.

s t
x
u v
Y
Figure 1.1

A vertex x is an extreme vertex of G if the induced subgraph of the neighbors of x is
complete or equivalently, V' — {z} is convex in G. The hull number is an important graph
parameter. The hull number of a graph was introduced by Everett and Seidman [7] and further
studied in [2, 3, 4, 5, §].

These concepts have many applications in location theory and convexity theory. There are
interesting applications of these concepts to the problem of designing the route for a shuttle
and communication network design. For basic graph theoretic terminology, we refer to [6]. We
also refer to [1] for results on distance in graphs.

If S is hull set of a connected graph G and u, v € S, then each vertex of every u—wv geodesic
of G belongs to I[S]. This gives the following observation.

Observation 1.1([3]) Let S be a h-set of a connected graph G and let u,v € S. If w # (u,v)

lies on a u — v geodesic in G, then w ¢ S.

The above observation motivate us to study a new type of sets, called geodesic irredundant
sets, which generalizes minimum hull sets in a graph. In the next section, we introduce and
study geodesic irredundant sets and the irredundant number of a graph. The irredundant
number of certain standard classes of graphs are determined. Various characterization results
are proved.

Theorem 1.2([3]) For integers m,n > 2, h(Ky, n) = 2.

Theorem 1.3([3]) FEach extreme vertex of a connected graph G belongs to every hull set of G.
In particular, if the set S of all extreme vertices is a hull set of G, then S is the unique h-set

of G.
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82. Geodesic Irredundant Sets in Graphs

Let S be a set of vertices in a connected graph G. A vertex v in S is called an interior vertex of
S, if v € I[S —{v}]. The set of all interior vertices of S is denoted by S°. It can be observe that
if SO =, then T° = () for any subset T of S. A set S of vertices is called a geodesic irredundant
set or simply irredundant set if S° = (). An irredundant set of maximum cardinality is called a
mazimum irredundant set or a gir — set of G. The cardinality of a gir — set is the irredundant
number gir(G) of G. Tt follows from Observation 1.1 that every minimum hull set of a connected
graph G is an irredundant set in G and so we have that 2 < h(G) < gir(G) < n, where n is the
order of G. To illustrate these concepts, consider the graph G in Figure 2.1. Let S = {va, vs, v5}.
Then it is clear that SY = () and so S is an irredundant set. It can be easily verified that any set
with four or more vertices is not an irredundant set of G and so gir(G) = |S| = 3. On the other
hand, let S = {v1,v4}. Then I[S’] =V and so we have that h(G) = 2. Since the irredundant
number of a disconnected graph is the sum of the irredundant numbers of its components, we
are only concerned with connected graphs. One can note that for each integer n, there is only
one connected graph of order n having the largest possible irredundant number, namely n, and
this is the complete graph K.

U1

(%5 (%)

V4

Figure 2.1

Theorem 2.1 For a connected graph G of order n, gir(G) = n if and only if G = K,,.

We determine the geodesic irredundant number of certain standard classes of graphs.

Proposition 2.2 For integers m > n > 2, gir(Kp, ») = m.

Proof 1t is clear that gir(K22) = 2 and so we can assume that m > 3. Let V5 and V%
be the partite sets of K, , with |V1| = m and |Va| = n. Then it is obvious that both V; and
V5 are irredundant sets of K, ,,. Now, let S be any set of cardinality greater than m. Then
SNVy # 0 and SNV, # (). Since |S| > 3, it follows that either [SNVi| > 2 or |SNT,| > 2.
This shows that S° # () and hence gir(K,, ) = |[V1| = m. O

Proposition 2.3 For any cycle C,, (n > 5), gir(C,) = 3.

Proof Let S = {x1, 2, -+ , 21} be any set of vertices in C,, of cardinality k > 4. We prove
that SV # (). Assume the contrary that S° = (). Then we consider the following two cases.

Case 1. n is even. Now, let v be the antipodal vertex of z1. If v € S and since |S| > 4, it
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follows that S° # (). So we can assume that v ¢ S. Let P : 1 = uy,ug,- - ,uznyq = v and
Py i x1 = w102, ,vz241 = v be the two z1 — v geodesics in C,,. Since S° = (), without loss of
generality we can assume that xo = u, € Py;and v3 = vs € Py and 24 = u, € P;. If t < r, then
x4 € SY; and it t > 7, then x5 € S°. This is a contradiction. Thus S is not an irredundant set
and hence gir(Cp) < 3. Now, since T'= {uy,uz, vz } is an irredundant set of cardinality 3, we
have that gir(C,) = 3.

Case 2. nisodd. Let 7 € S and let v,v’ be the two antipodal vertices of z1. Let P, : 1 =
Uy, U2, ,Unt1 =0 and Py iy = v1,09, - ,Unp1 = v be the 1 — v’ and x1 — v geodesics in
Ch, respectivegly. Since S is an irredundant set cozntaining at least four vertices, it follows that
either v ¢ S orv' ¢ S.

Subcase 2.1 v ¢ S and v/ = 25 € S. Then it is clear that 3,24 ¢ P, and so a3, x4 € Ps.
This implies that either z3 € S° or 4 € SY. This leads to a contradiction to the fact that
SO0 = .

Subcase 2.2 v ¢ S and v’ ¢ S. Now, since S° = (), we have that P; contains at most one
of x5 and x3. Also, P contains at most one of zo and x3. Hence without loss of generality, we
may assume that x5 € Py and x3 € P». Now, since |S| > 4, as in Case 1, it follows that S° # ().
This is impossible and hence gir(Cy,) < 3. Now, since T' = {z1,v,v'} is an irredundant set of
C',, we have that gir(C,,) = 3. O

The irredundant number of a graph has certain properties that are also possessed by the
hull number of a graph. In [6], it was shown that if G is a connected graph of order n > 2 and
diameter d, then h(G) < n —d+ 1. The same result is also true for the irredundant number of
a graph.

Theorem 2.4 Let G be a connected graph of order n and diameter d. Then gir(G) < n—d+1.

Proof Let S be any set of cardinality greater than n —d+ 1. Let P : ug,u1,--- ,uq = v be
a diameteral path in G. Since |S| > n — d+ 1, it follows that S contains at least three vertices
from the diameteral path P, say, u;,u; and u; with 0 < i < j < k < d. This implies that
u; € Iui,uy] and so S° # 0. Thus gir(G) <n—d+ 1. |

We determine gir(T) for T a tree.

Theorem 2.5 For any tree T with k end vertices, gir(T) = k.

Proof Let S be a gir-set of T. Suppose that the set S contains a cut vertex, say, v of
T. Let C1,Cy,...,Ci(l > 2) be the components of T — v. It is clear that each component C;
of T'— v contains at least one end vertex, say, u; of T'. Since S is an irredundant set of T’
containing the cut vertex v, without loss of generality, we may assume that C; NS # ¢ and
CinS =0 for all : = 2,3,---,1. First, we prove that [ = 2. Otherwise, if [ > 3, then the
set S” = (S — {v}) U {uz,us} is an irredundant set in 7' with |S’'| = gir(G) + 1. This is a
contradiction. Hence | = 2. Now, let S; = (S — {v}) U {uz}. Then S; is an irredundant set of
cardinality gir(G). Moreover, S; excludes the cut vertex v and includes a new end vertex us.

We can continue this process until the resultant gir-set has no cut vertices. This is possible
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only when S has k vertices or less. Now, since the set of all end vertices of 7" is an irredundant

set, the result follows. O

A caterpillar is a tree of order 3 or more, the removal of whose end-vertices produces a
path.

Theorem 2.6 For any non trivial tree T of order n and diameter d, gir(T) =n—d+1 if and

only if T is a caterpillar.

Proof Let T be any non trivial tree. Let u, v be two vertices in T' such that d(u,v) = d; and
let P:u=wg,v1,...,04-1,0q = v be a diameteral path. Let k be the number of end vertices of
T and [ the number of internal vertices of T other than vy, vs,...,v4_1. Thend—1+4+1+k = n.
By Theorem 2.5, gir(T) =k =n —d — 1+ 1. Hence gir(T) =n —d+ 1 if and only if [ = 0,
if and only if all the internal vertices of T lie on the diameteral path P, if and only if 7" is a
caterpillar. O

Remark 2.7 Every minimum hull set of a connected graph G contains its extreme vertices.
This is, in fact, true for non-minimum hull sets and follows directly from the fact that an
extreme vertex v is either an initial or terminal vertex of any geodesic containing v. One might
be led to believe that every maximum irredundant set of a graph G must contains its extreme
vertices, but this is not so, as the graph G in Figure 2.2, the set S = {uy,u2,us, us} is the
unique gir-set of G. Moreover, any irredundant set of G' containing the extreme vertex us is of

cardinality less than or equal to 3. us

Ul U2

Ugq us
Figure 2.2

Remark 2.8 In a connected graph G, cut vertices do not belong to any h-set of G. But cut
vertices may belong to gir-sets of a graph. For the graph G in Figure 2.3, the set S = {uy, us, us}

is an gir-set containing the cut vertex wu;.
U2

Uy
5

us

Figure 2.3
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Theorem 2.9 In a connected graph G, a cut vertex v belongs to an gir-set in G if and only if

G — v has exactly two components and at least one of them is K.

Proof First, let S be an gir-set of G containing the cut vertex v. Suppose that G — v has
three components, say C7, Co and C3. Since S is an irredundant set containing the cut vertex v,
it follows that S intersect with at most one of C7, Cy and C3. Assume without loss of generality
that SNV(Cy) =0 and SNV (C5) = (. Choose vertices z and y in G such that x € V(Cs) and
y € V(C3). Then it is obvious that the set T' = (S — {v}) U {z, y} is an irredundant set in G.
This is a contradiction to the maximality of S. Hence G —v has exactly two components, say C
and C. Now, suppose that C # K; and Cy # K;. Then as above, we have that SNV (Cy) = ()
or SNV (Cy) = (. Since |S| > 2, we can assume that SNV (Cy) # 0 and SNV (Cy) = 0. Let x
and y be any two distinct vertices in Co. Then the set T' = (S — {v}) U {x, y} is an irredundant
set in GG, which is impossible. Hence either C1y = K; or Cy = K;. Conversely, suppose that
G —v has exactly two components, say, C7 and Cs such that V(C) = {u}. Let S be any gir-set
of G. Suppose that v ¢ S. Since S is a maximum irredundant set and V(Cs) is convex in G,
it follows that the vertex w belongs to S. This implies that the set T = (S — {u}) U {v} is an

irredundant set of cardinality gir(G) containing the cut vertex v. Hence the result follows. O

Next theorem is a characterization of classes of graphs G for which gir(G) = 2. The length
of a shortest cycle in a connected graph G is the girth of G, denoted by girth(G).

Theorem 2.10 For a connected graph G, gir(G) = 2 if and only if G = P, or G = Cy.

Proof If G = P, or G = (Y4, then it follows from Theorem 2.5 and Proposition 2.2 that
gir(G) = 2. Conversely, assume that gir(G) = 2. If G is acyclic, then it follows from Theorem
2.5 that G = P,. So, assume that G contains cycles. First, we prove that girth(G) = 4.
Suppose that girth(G) =r > 5. Let C : uy,ug, -+ ,u,,u; be a shortest cycle in G. If r = 2n,
then it clear that d(uy,u,) =n — 1;d(ur, uny2) =n — 1 and d(uy, un42) = 2. Hence it follows
that the set S = {u1, upn, upy2} is an irredundant set in G, which is a contradiction to the fact
that gir(G) = 2. Similarly, if » = 2n + 1, then we have that d(u1, unt1) = n;d(ur, upnt2) = n
and d(up41,Unt2) = 1. Hence it follows that the set S = {u1, Un11,Unt2} is an irredundant
set, which is also impossible. This implies that girth(G) < 4. Now, if girth(G) = 3, then there
exist three mutually adjacent vertices in G, say, u,v and w and so G has an irredundant set of
cardinality 3. Therefore, we have that girth(G) = 4. Let C : u,v,w,z,u be a shortest cycle in
G. If G # C, then without loss of generality, we can assume that there exists a vertex y in G
such that y ¢ V(C) and y is adjacent to u in G. Since girth(G) = 4, it follows that y is not
adjacent to both z and v. This shows that the set T = {z,y,v} is an irredundant set in G,
which leads to a contradiction. Hence we have that G = Cj. O

For any connected graph G, we have that 2 < h(G) < gir(G). The following theorem is a
realization of this result.

Theorem 2.11 For every pair a,b of integers with 2 < a < b, there exists a connected graph G
such that h(G) = a and gir(G) = b.
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Proof If a = 2, then it follows from Theorem 1.2 and Proposition 2.2 that h(Ks3;) = 2
and gir(Kayp) = b. So, assume that a > 2. Let G be the graph obtained from the complete
graph K} with vertex set V(K}) = {x1,22, -, 2} by adding new vertices u and v; and the
edges uzr;(1 <i <b—a+2) and va;(1 <i < b—a+2). We first show that h(G) = a.
Since the set S = {u,v, Tp—at3, Tb—ata, - ,Tp} of all extreme vertices of G is a hull set of
G, it follows directly from Theorem 1.3 that h(G) = |S| = a. Also, it is clear that the set
T = {21,292, - ,xp} is an irredundant set and so gir(G) > |T| = b. Now, it follows from
Theorems 2.1 and 3.1 that gir(G) = b. O

83. Maximum Irredundant Subgraphs

In this section, we present a characterization of graphs of order n having the irredundant
number n — 1. By Theorem 2.5, the star Ky ,,—; of order n > 3, which can also be expressed as
K, + K, _1, has irredundant number n — 1. Our characterization of graphs of order n having
the irredundant number n — 1 shows that the class of stars can be generalized to produce all

graphs having the irredundant number n — 1.

Theorem 3.1 Let G be a connected graph of order n. Then gir(G) = n — 1 if and only if
G =K, —I—UjmjKj with > m; > 2 or G = K,, — {e1,ea, -+ ,ex} with 1 <k < n — 3, where

e;’s all are edges in K, which are incident to a common vertex v.

Proof Suppose that G = K; + Uj m; K; and let v be the cut vertex of G. Then it is clear
that V' — {v} is an irredundant set in G. Also, if G = K, — {vx1, vz, -+ ,vx)}, then V — {v}
is an irredundant set in G. Hence it follows from Theorem 2.1 that gir(G) = n — 1. Conversely,
assume that ¢gir(G) = n — 1, then it follows from Theorems 2.1 and 2.4that diam(G) = 2 and

so G contains interior vertices. We consider the following two cases.

Case 1. (@ has a unique interior vertex, say v. Choose vertices v and w both are different
from v such that v € I[u,w]. In this case, we prove that G = Ky +J; m;K;. For, if G has
no cut vertices, then the vertices v and w lie on a common cycle C; and so there exist vertices
z,y and z on the cycle C such that P : x,y, 2z is a geodesic of length 2 with y # v. This leads
to a contradiction and hence G has cut vertices. Now, since every cut vertex of GG is also an
interior vertex, it follows that v is the only cut vertex in G. Since diam(G) = 2 and v is the
unique interior vertex in GG, we have that the vertex v must be adjacent to every other vertices
in G. Now, let C1,Cq,...Ck (k > 2) be the components of G — v. We claim that each C; is
complete. Suppose there exists j with 1 < j < k such that diam(C;) > 2. Then there exists a
geodesic @ : up,us,us in G with ug # v. This is a contradiction to the fact that v is the unique

interior vertex in G. Hence each component of G — v is complete and so G = K1 +J; m; K.

Case 2. G has at least two interior vertices. Let S be an irredundant set of cardinality n — 1
and let V' — S = {v}. We first claim that < S > is complete. If not, assume that there exist
vertices  and y in S which are not adjacent in G. Then d(z,y) = 2. Also, since S is an
irredundant set of cardinality n — 1, we have that v is the only vertex adjacent to both x and

y in G. Moreover, one can observe that if u; and us are non-adjacent vertices in .S, then the
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vertex v is only vertex adjacent to both u; and us in G. Now, Since G contains at least two
interior vertices, it follows that there exist vertices u and z in G such that u # z and z € Ifu, v].
It follows from the above observation that the vertex u is adjacent to both x and y. Hence
u € SY. This is a contradiction. Thus < S > is complete. Now, since G is connected. By
Theorem 2.1, we have that G = K,, — {vx1,vze, - 02k} |

We now introduce a concept that will turn out to be closely connected to the result already
stated in this section. A graph H is called a mazimum irredundant subgraph, if there exists a
graph G containing H as an induced subgraph such that V(H) is a maximum irredundant set
of GG. For example, consider the graphs H and G in Figure 3.1. It follows from Theorems 2.1
and 3.1 that the irredundant set S = {u, v, w} is maximum in G, and H is an induced subgraph
of G. Hence H is a maximum irredundant subgraph of the graph G. Also, by Theorem 3.1,
for positive integers n1,ng, - - ,n, with » > 1, the graph K,, U K, U---U K, is a maximum
irredundant subgraph. The analog concepts of minimum hull subgraph was studied in [3]. A
graph H is a minimum hull subgraph if there exists a graph G containing H as an induced
subgraph such that V(H) is a minimum hull set of G. Next, we characterize the class of all

maximum irredundant subgraphs.

u
u
°
Ve——e W
v w
H G

Figure 3.1 G&H

Theorem 3.2 A non trivial graph H is a mazximum irredundant subgraph of some connected

graph if and only if every component of H is complete.

Proof First, let H be a maximum irredundant subgraph of a connected graph G. Assume to
the contrary, that H contains a component that is not complete. Then there exist u,v € V(H)
such that dg(u,v) = 2 and so H has at least one vertex, say, w different from both v and v
such that w lies on some v — v geodesic in H . This is a contradiction to the fact that V(H)
is an irredundant set in G. We now verify the converse. Let H be a graph such that every

component of H is complete. If H is connected, then H is the maximum irredundant subgraph

of H itself. Otherwise, H = K,,, U K,,, U---U K, for positive integers ni,na,--- ,n,, where
r > 2. Let G = K; + H. Then by Theorem 3.1, V(H) is a maximum irredundant set in G.
This completes the proof. O

We leave the following problem as open.

Problem 3.3 Characterize the classes of graphs G for which gir(G) = h(G).
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Abstract: For an arborescence T, a directed pathos block line cut-vertex digraph Q =
DPBL.(T) has vertex set V(Q) = A(T)UC(T) U B(T)U P(T), where C(T) is the cut-
vertex set, B(T') is the block set, and P(T) is a directed pathos set of 7. The arc set A(Q)
consists of the following arcs: ab such that a,b € A(T') and the head of a coincides with the
tail of b; C'd such that C' € C(T) and d € A(T') and the tail of d is C'; dC such that C' € C(T')
and d € A(T') and the head of d is C; Be such that B € B(T') and ¢ € A(T') and the arc ¢
lies on the block B; Pa such that a € A(T) and P € P(T') and the arc a lies on the directed
path P; P;P; such that P;, P; € P(T') and it is possible to reach the head of P; from the
tail of P; through a common vertex, but it is possible to reach the head of P; from the tail
of P;. The problem of reconstructing an arborescence from its DPBL.(T) is discussed. We
present the characterization of digraphs whose DPBL.(T') are planar and outer planar. In
addition, a necessary and sufficient condition for DPBL.(T) to have crossing number one
is presented. Further we show that for any arborescence T, DPBL.(T) never be maximal

outer planar and minimally nonouterplanar.
Key Words: Crossing number, inner vertex number, complete bipartite digraph.

AMS(2010): 05C20

81. Introduction

We shall assume that the reader is familiar with the standard terminology on graphs and
digraphs and refer the reader to [1,4]. The concept of pathos of a graph G was introduced by

Harary [2] as a collection of minimum number of edge disjoint open paths whose union is G.

The path number of a graph G is the number of paths in any pathos. The path number of

1Received May 18, 2016, Accepted November 26, 2016.
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a tree T equals k, where 2k is the number of odd degree vertices of T'. Harary [3] and Stanton
[8] calculated the path number of certain classes of graphs like trees and complete graphs.

H. M. Nagesh and R. Chandrasekhar [7] introduced the concept of a pathos block line
cut-vertex graph of a tree.

A pathos block line cut-vertex graph of a tree T, written PBL.(T), is a graph whose
vertices are the edges, paths of a pathos, cut-vertices, and blocks of T, with two vertices of
PBL.(T) adjacent whenever the corresponding edges of T are adjacent or the edge lies on the
corresponding path of the pathos or the edge incident with the cut-vertex or the edge lies on the
corresponding block; two distinct pathos vertices P, and P, of PBL.(T) are adjacent whenever
the corresponding paths of the pathos P, (v;,v;) and P, (v, v;) have a common vertex.

The characterization of graphs whose PBL.(T') are planar, outer planar, maximal outer
planar, and minimally nonouterplanar were presented.

In this paper, we extend the definition of a pathos block line cut-vertex graph of a tree
to an arborescence. Furthermore, some of its characterizations such as the planarity, outer
planarity, etc., are discussed.

We need some concepts and notations on directed graphs. A directed graph (or just
digraph) D consists of a finite non-empty set V(D) of elements called vertices and a finite
set A(D) of ordered pair of distinct vertices called arcs. Here V(D) is the vertez set and A(D)
is the arc set of D. If (u,v) or wv is an arc in D, then we say that w is a neighbor of v. A
digraph D is semicomplete if for each pair of distinct vertices u and v, at least one of the arcs
(u,v) and (v,u) exists in D. A semicomplete digraph of order n is denoted by D,,.

For a connected digraph D, a vertex z is called a cut-vertez if D — {z} has more than one
connected component. A block B of a digraph D is a maximal weak subdigraph of D, which
has no vertex v such that B — v is disconnected. An entire digraph is a block if it has only
one block. There are exactly three categories of blocks: strong, strictly unilateral, and strictly
weak”. The out-degree of a vertex v, written d*(v), is the number of arcs going out from v
and the in-degree of a vertex v, written d—(v), is the number of arcs coming into v. The total
degree of a vertex v, written td(v), is the number of arcs incident with v. We immediately have
td(v) = d~(v) +d* (v).

A vertex with an in-degree (out-degree) zero is called a source (sink). The directed path
on n > 2 vertices is the digraph P, = {V(P,), E(P,),n}, where V(P,) = {u1,uz, - ,un},
E(P,) ={e1,e9,--- ,en_1}, where 1 is given by n(e;) = (ui, uis1), for alli € {1,2, -+, (n—1)}.

An arborescence is a directed graph in which, for a vertex u called the root (a vertex of
in-degree zero) and any other vertex v, there is exactly one directed path from u to v. We shall
use T" to denote an arborescence. A root arc of T is an arc which is directed out from the root
of T, i.e., an arc whose tail is the root of T'.

Since most of the results and definitions for undirected planar graphs are valid for planar
digraphs also, the following definitions hold good for planar digraphs.

If D is a planar digraph, then the inner vertex number i(D) of D is the minimum number
of vertices not belonging to the boundary of the exterior region in any embedding of D in the
plane. A digraph D is outerplanar if i(D) = 0 and minimally nonouterplanar if i(D) =1 [5].

The crossing number of a digraph D, denoted by cr(D), is the minimum number of crossings
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of its arcs when the digraph D is drawn in the plane.

82. Definitions

Definition 2.1 The line digraph L(D) of a digraph D has the arcs of D as vertices. There is

an arc from D— arc pq towards D— arc uv if and only if ¢ = u.

Definition 2.2 If a directed path ﬁn starts at one vertex and ends at a different vertex, then

—

P, is called an open directed path.

Definition 2.3 The directed pathos of an arborescence T is defined as a collection of minimum

number of arc disjoint open directed paths whose union is T'.

Definition 2.4 The directed path number K of T is the number of open directed paths in any

directed pathos of T, and is equal to the number of sinks in T'.

Definition 2.5 For an arborescence T, a directed pathos line cut-vertezx digraph @ = DPL.(T)
has vertex set V(Q) = A(T) U C(T) U P(T), where C(T) is the cut-vertex set and P(T) is a
directed pathos set of T. The arc set A(Q) consists of the following arcs: ab such that a,b € A(T)
and the head of a coincides with the tail of b; Cd such that C € C(T') and d € A(T) and the tail
of d is C; dC such that C € C(T) and d € A(T) and the head of d is C; Pa such that a € A(T)
and P € P(T) and the arc a lies on the directed path P; P;P; such that P;, P; € P(T) and it is
possible to reach the head of P; from the tail of P; through a common vertex, but it is possible
to reach the head of P; from the tail of P;.

Definition 2.6 For an arborescence T, a directed pathos block line cut-vertex digraph @ =
DPBL.(T) has vertex set V(Q) = A(T) UC(T)U B(T)U P(T), where C(T) is the cut-vertex
set, B(T) is the block set, and P(T) is a directed pathos set of T. The arc set A(Q) consists of
the following arcs: ab such that a,b € A(T) and the head of a coincides with the tail of b; Cd
such that C € C(T) and d € A(T) and the tail of d is C; dC such that C € C(T) and d € A(T)
and the head of d is C; Be such that B € B(T') and ¢ € A(T') and the arc ¢ lies on the block B;
Pa such that a € A(T) and P € P(T) and the arc a lies on the directed path P; P;P; such that
P;,P; € P(T) and it is possible to reach the head of P; from the tail of P; through a common
vertex, but it is possible to reach the head of P; from the tail of P;.

Note that the directed path number k' of an arborescence T' is minimum only when the
out-degree of the root of T' is one. Therefore, unless otherwise specified, the out- degree of the
root of every arborescence is exactly one. Finally, we assume that the direction of the directed
pathos is along the direction of the arcs in T. Since the pattern of directed pathos for an
arborescence is not unique, the corresponding directed pathos block line cut-vertex digraph is

also not unique.

§3. Basic Properties of DPBL.(T)
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Remark 3.1 Since every arc of T is a block (strictly unilateral), the arcs directed out of block

vertices reaches the vertices of L(T') does not affect the crossing number of DPBLc¢(T).

Observation 3.2 If T is an arborescence of order n (n > 3), then L(T) C L.(T) C DPL.(T) C
DPBL.(T).

Remark 3.3 The number of arcs whose tail and head are the directed pathos vertices in
DPBL.(T)is k' — 1.

Proposition 3.4 Let T be an arborescence with vertex set V(T') = {v1,va, -+ ,v,}, cut-vertex
set C(T) ={Cy,Cyq,---,C.}, and block set B(T) = {B1, Bz, -+, Bs}. Then the order and size
of DPBL.(T) are

2(n—1)+k +Y C; and Y d (vi)-dT(vi)+ Y _{d(Cj)+d"(C))} + K +2n—3,
j=1 i=1 j=1

respectively.

Proof Let T be an arborescence with vertex set V(T') = {v1,va,--- ,v,}, cut-vertex
set C(T) = {C1,C4,---,Cy}, and block set B(T) = {Bjy,Ba, -+ ,Bs}. Then the order of
DPBL.(T) equals the sum of size, cut-vertices, blocks, and the directed path number k of T.

Since every arc of an arborescence is a block, the order of DPBL.(T) is

n—1+> Ci+n—1+k,

Jj=1

=2n—1)+k +> .

Jj=1

The size of DPBL.(T) equals the sum of size of T" and L(T); total degree of cut-vertices;
and the number of arcs whose tail and head are the directed pathos vertices. By Remark 3.3,
the size of DPBL.(T) is,

zn: d=(v;) - d(v;) + i{d—(cj) +dH(CH}+2(n—1)+k —1,

i—1 =1

= id_(vz‘)'d+(Uz‘)+i{d_(0j)+d+(0j)}+k/ +2n - 3. O
i—1 =1

84. A Criterion for Directed Pathos Block Line Cut-Vertex Digraphs

The main objective is to determine a necessary and sufficient condition that a digraph be a
directed pathos block line cut-vertex digraph.

A complete bipartite digraph is a directed graph D whose vertices can be partitioned into
non-empty disjoint sets A and B such that each vertex of A has exactly one arc directed towards

each vertex of B and such that D contains no other arc.
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Theorem 4.1 A digraph T is a directed pathos block line cut-vertex digraph of an arborescence
T if and only if V(T') = A(T) U C(T) U B(T) U P(T) and arc sets

(1) U, X; x Y;, where X; and Y; are the sets of in-coming and out-going arcs at v; of T,
respectively;

(2) Uj—q Up ZJ,» x C such that ZJ,- x Cr = ¢ for j #k;

(3) Ugeq Uiy Ck X Zj such that Cy, x Zj = ¢ for k # j, where Z;- and Z; are the sets of
in-coming and out-going arcs at Cy, of T, respectively.

(iv) UL _, U’;—:l Py, x Y} such that P, x Y; = ¢ for k # j;

(4) Upey Uiy Pro X Yj/ such that Py x Yj/ = ¢ for k # j, where Y; is the set of arcs on
which Py lies and le is the set of directed paths whose heads are reachable from the tail of P
through a common vertex in T';

(5) Uj—y Uy _, Bi X Ny such that By X Ny = ¢ for |l # I, where Ny is the set of arcs lies
on By inT.

Proof Let T be an arborescence with vertex set V(T') = {v1,va,- - ,v,}, cut-vertex set
C(T)={Cy,Cy,---,C.},block set B(T) = {B1, Ba,- -, Bs}, and a directed pathos set P(T') =
{P1, Ps,---, P;}. We consider the following cases.

Case 1. Let v be a vertex of T with d~(v) = a and d*(v) = 3. Then « arcs coming into v
and the [ arcs going out of v give rise to a complete bipartite subdigraph with « tails and §
heads and « - § arcs joining each tail with each head. This is the decomposition of L(T') into
mutually arc disjoint complete bipartite subdigraphs.

Case 2. Let C; be a cut-vertex of T with d=(C;) = a'. Then o arcs coming into C; give rise
to a complete bipartite subdigraph with o tails and a single head (i.e., C;) and o arcs joining
each tail with C;.

Case 3. Let C; be a cut-vertex of T with d*(C;) = 8'. Then 3 arcs going out of C; give rise
to a complete bipartite subdigraph with a single tail (i.e., C;) and B, heads and B, arcs joining
C; with each head.

Case 4. Let P; be a directed path which lies on o arcs in T. Then o arcs give rise to a
complete bipartite subdigraph with a single tail (i.e., P;) and o heads and o arcs joining P;
with each head.

Case 5. Let P; be a directed path, and let 6” be the number of directed paths whose heads
are reachable from the tail of P; through the common vertex in 7. Then 6// arcs give rise to a
complete bipartite subdigraph with a single tail (i.e., P;) and 6// heads and BN arcs joining P;
with each head.

Case 6. Let B, be a block of T. Then the arcs, say vy lies on B,, give rise to a complete
bipartite subdigraph with a single tail (i.e., Bp) and « heads and « arcs joining B, with each
head.

Hence by all the above cases, Q = DPBL.(T) is decomposed into mutually arc-disjoint
complete bipartite subdigraphs with V(Q) = A(T) U C(T) U B(T) U P(T) and arc sets (i)

U, X; xY;, where X; and Y; are the sets of in-coming and out-going arcs at v; of T', respectively.



Directed Pathos Block Line Cut-Vertex Digraph of an Arborescence 149

(2) Uj_y Up ZJ/- x C} such that ZJ/» x Cp = ¢ for j # k.

(3) Ugzq Uiy Ck x Zj such that Cy x Z; = ¢ for k # j, where ZJ/» and Z; are the sets of
in-coming and out-going arcs at Cj of T', respectively.

(4) Ut_, U§:1 Py, x Y; such that P, x Y; = ¢ for k # j.

(5) Ut_, U’;—:l Py, % Yj/ such that P x Yj/ = ¢ for k # j, where Y; is the set of arcs on
which P lies and Yj, is the set of directed paths whose heads are reachable from the tail of Py
through a common vertex in 7.

(6) Uj—y Uji_, Bi x Ny such that B; x Ny = ¢ for | # I, where Ny is the set of arcs lies
on By inT.

Conversely, let T be a digraph of the type described above. Let t1, 2, - ,; be the vertices
corresponding to complete bipartite subdigraphs 13,75, -+ ,1; of Case 1, respectively; and let
w',w?,- -, w’ be the vertices corresponding to complete bipartite subdigraphs Pl/7 PQ/7 e ,Pt/
of Case 4, respectively. Finally, let ¢y be a vertex chosen arbitrarily.

For each vertex v of the complete bipartite subdigraphs 71,75, -+ ,T;, we draw an arc a,
as follows.

(a) If d*(v) > 0, d(v) = 0, then a, := (to,t;), where i is the base (or index) of T; such
that v € ;.

(b) If d*(v) > 0, d~(v) > 0, then a, := (t;,t;), where i and j are the indices of T; and T}
such that v € X; NY;.

(c) If dt(v) =0, d”(v) = 1, then a, := (tj,w™) for 1 < n < t, where j is the base of T}
such that v € Xj.

Note that, in (¢;,w™) no matter what the value of j is, n varies from 1 to ¢ such that the
number of arcs of the form (¢;,w") is exactly t.

We mark the cut-vertices as follows. From Case 2 and Case 3, we observe that for every
cut vertex C', there exists exactly two complete bipartite subdigraphs, one containing C' as the
tail, and other as head. Let it be CJ/» and CJ/»/ for 1 < j < r such that C; contains C as the tail
and CJ,-, as head. If the heads of C;- and tails of C;-l are the heads and tails of a single T; for
1 <i <, then the vertex t; is a cut-vertex, where 7 is the index of T;.

We now mark the directed pathos as follows. It is easy to observe that the directed path
number k' equals the number of subdigraphs of Case 4. Let 11,19, -+ ,1; be the number of
heads of subdigraphs Pl/7 PQ/7 e ,Pt/ , respectively. Suppose we mark the directed path P;. For
this we choose any 1 number of arcs and mark P; on v arcs. Similarly, we choose 1 number
of arcs and mark P, on 99 arcs. This process is repeated until all directed pathos are marked.
The digraph T with directed pathos and cut-vertices thus constructed apparently has T  as
directed pathos block line cut- vertex digraph. O

Given a directed pathos block line cut-vertex digraph @, the proof of the sufficiency of
above theorem shows how to find an arborescence T such that DPBL.(T) = Q. This obviously
raises the question of whether @) determines 7' uniquely. Although the answer to this in general
is no, the extent to which 7" is determined is given as follows.

One can easily check that using reconstruction procedure of the sufficiency of above the-

orem, any arborescence (without directed pathos) is uniquely reconstructed from its directed
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pathos block line cut-vertex digraph. Since the pattern of directed pathos for an arborescence is
not unique, there is freedom in marking directed pathos for an arborescence in different ways.
This clearly shows that if the directed path number is one, any arborescence with directed
pathos is uniquely reconstructed from its directed pathos block line cut-vertex digraph. It is
known that a directed path is a special case of an arborescence. Since the directed path number
k' of a directed path P:l of order n (n > 3) is exactly one, a directed path with a directed pathos

is uniquely reconstructed from its directed pathos block line cut-vertex digraph.

§5. Characterization of DPBL.(T)

Theorem 5.1 A directed pathos block line cut-vertex digraph DPBL.(T) of an arborescence
T is planar if and only if the total degree of each vertex of T' is at most three.

Proof Suppose DPBL.(T) is planar. Assume that td(v) > 4, for every vertex v € T.
Suppose there exists a vertex v of total degree four in 7', that is, T" is an arborescence whose
underlying graph is Ky 4. Let V(T) = {a,b,¢,d,e} and A(T) = {(a,c),(c,b),(c,d), (c,e)}
such that @ and (a,c) are the root and root arc of T', respectively. By definition, A(L(T)) =
{(ac, cb), (ac, cd), (ac, ce)}. Since ¢ is the cut-vertex of T, it is the tail of arcs (c,b), (¢, d), (¢, e);
and the head of an arc (a,c). Then ¢ is a neighbor of vertices ¢b, cd, ce; and ac is a neighbor of
c¢. This shows that cr(L.(T)) = 0. Let P(T) = {P1, P>, P3} be a directed pathos set of T such
that Py lies on the arcs (a, ¢), (¢,b); Px lies on (¢, d); and Ps lies on (¢, e). Then P; is a neighbor
of ac, cb, Py, P3; Py is a neighbor of ¢d; and Ps is a neighbor of ce. Clearly cr(DPL.(T)) = 1.
By Remark 3.1, cr(DPBL.(T)) = 1, a contradiction.

Conversely, suppose that the total degree of each vertex of T' is at most three. Let V(T') =
{v1,va, - ,vn} and A(T) = {e1,ea, -+ ,e,—1} such that v; and e; = (v1,v2) are the root and
root arc of T, respectively. By definition, L(T) is an out-tree of order n — 1. The number
of cut-vertices of T' equals the number of vertices whose total degree is at least two. Then
L.(T) is a connected digraph in which every block is either D3 or Dy — e. Furthermore, the
directed path number k' is the number of sinks in 7. Then the arcs joining vertices of L(T')
and directed pathos vertices; and arcs joining directed pathos vertices gives DPL.(T) such that
cr(DPL.(T)) = 0. By Remark 3.1, ct(DPBL.(T)) = 0. This completes the proof. O

Theorem 5.2 A directed pathos block line cut-vertex digraph DPBL.(T) of an arborescence
T is outer planar if and only if T is a directed path B, of order n (n > 3).

Proof Suppose DPBL.(T) is outer planar. Assume that 7' is an arborescence whose
underlying graph is Ki 3. Let V(T) = {a,b,c,d} and A(T) = {(a,b), (b,c), (b,d)} such that
a and (a,b) are the root and root arc of T, respectively. Then A(L(T)) = {(ab,bc), (ab,bd)}.
Since b is the cut-vertex of T, it is the tail of arcs (b, ¢), (b,d); and the head of an arc (a,b). By
definition, L.(T) = D4 — e. Clearly i(L.(T)) = 0. Let P(T) = {Pi, P>} be a directed pathos
set of T' such that P; lies on the arcs (a,b), (b, c¢); and Py lies on (b,d). Then P is a neighbor
of ab,bc, Py; and P, is a neighbor of bd. This shows that i(DPL.(A,)) = 1. Since every arc
of T is a block, let By, Ba, Bs be blocks corresponding to arcs (a,b), (b, ¢), (b, d), respectively.
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Then the arcs joining By and ab; By and bc; and Bs and bd increases the inner vertex number
of DPL.(T) by one. Thus i(DPBL.(T)) = 2, a contradiction.

Conversely, suppose that 7' is a directed path of order n (n > 3). Let V(T') = {v1,v2,- -+ ,vn}
and A(T) = {e1,e2, - ,en—1}. Clearly, the directed path number of T is one. Then the un-
derlying graph of DPL(T) is the fan graph Fy ,_1. Let C(T) = {C1,C4,--- ,Cp_2} be the
cut-vertex set of T' such that the arcs e; are directed into the cut-vertices C;, and e; 1 are
directed out of C; for 1 < ¢ < n — 2. Then the vertices e; are the neighbors of C;, and C; are
the neighbors of e;41. This shows that i(DPL.(T)) = 0. Since every arc of T is a block, by
Remark 3.1, i(DPBL.(T)) = 0. O

Theorem 5.3(F. Harary, [1]) Every mazimal outer planar graph G with n vertices has 2n — 3

edges.
Theorem 5.4 For any arborescence T, DPBL.(T) is not mazimal outerplanar.

Proof We use contradiction. Suppose that DPBL.(T) is maximal outer planar. We
consider the following three cases.

Case 1. Suppose that td(v) > 4, for every vertex v € T. By Theorem 5.1, DPBL.(T) is

nonplanar, a contradiction.

Case 2. Suppose there exits a vertex of total degree three in T. By necessity of Theorem 5.2,
DPBL.(T) nonouterplanar, a contradiction.

Case 3. Suppose that T is a directed path ﬁn of order n (n > 3). By Proposition 3.4, the
order and size of DPBL.(T) are 3a+ 3 and 5a + 2, respectively, where o = (n —2),n > 3. But
S5a+ 2 < 6+ 3 = 2(3a+ 3) — 3. By Theorem 5.3, DPBL.(T) is not maximal outerplanar,
again a contradiction. Hence by all the above cases, DPBL.(T) is not maximal outerplanar.
O

Theorem 5.5 For any arborescence T, DPBL.(T) is not minimally nonouter planar.

Proof We use contradiction. Suppose that DPBL.(T') is minimally nonouter planar. We
consider the following three cases.

Case 1. Suppose that td(v) > 4, for every vertex v € T. By Theorem 5.1, DPBL.(T) is

nonplanar, a contradiction.

Case 2. Suppose there exits a vertex of total degree three in T. By necessity of Theorem 5.2,
i(DPBL.(T)) = 2, a contradiction.

Case 3. Suppose that T is a directed path P, of order n (n > 3). By Theorem 5.2, DPBL.(T)
is outer planar, again a contradiction. Hence by all the above cases, DPBL.(T') is not minimally

nonouterplanar. O

Theorem 5.6 A directed pathos block line cut-vertex digraph DPBL.(T) of an arborescence
T has crossing number one if and only if the underlying graph of T' is K 4.
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Proof Suppose DPBL.(T) has crossing number one. Assume that T is an arborescence
whose underlying graph is a star graph K;, on n > 5 vertices. Suppose T' = K 5. Let
V(T) = {a,b,c,d,e, f} and A(T) = {(a,c¢), (¢,b), (¢,d), (¢c,e), (c, )} such that a and (a,c) are
the root and root arc of T, respectively. Then A(L(T)) = {(ac, cb), (ac, cd), (ac, ce), (ac, cf)}.
Since ¢ is the cut-vertex of T, it is the tail of arcs (¢, b), (¢, d), (c,e), (¢, f); and the head of an
arc (a,c). Then ¢ is a neighbor of vertices cb, cd, ce, cf; and ac is a neighbor of ¢. This shows
that cr(Lo(T)) = 0. Let P(T) = {Py, P2, P5, P4} be a directed pathos set of T' such that P; lies
on the arcs (a,c), (¢,b); Py lies on (c,d); Ps lies on (c,e); and Py lies on (¢, f). Then P; is a
neighbor of ac, cb, P», Ps, Py; P, is a neighbor of c¢d; Ps is a neighbor of ce; and Py is a neighbor
of ¢f. This shows that cr(DPL.(T)) = 2. By Remark 3.1, cr(DPBL.(T)) = 2, a contradiction.

Conversely, suppose that 7" is an arborescence whose underlying graph is K 4. By necessity
of Theorem 5.1, cx(DPBL.(T)) = 1. This completes the proof. O
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Abstract: The present paper deals with a spherical chain whose centers lie on a horizontal
plane which can be drawn inside a spherical fragment and we display some geometric prop-
erties related to the chain itself. Here, we also grant recursive and non recursive formulas

for calculating the coordinates of the centers and the radii of the spheres.
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81. Introduction

Let us consider a sphere “ABEFA” with diameter AFE and center L. If we cut this sphere
by a plane, parallel to the coordinate planes then we get a circle and this intersection plane
that contains the circle is nothing but the Y; = 0 plane. Because we construct the coordinate
system at the point I (see Figure 1), it is the intersection between the diameter(AE) of the
sphere“ABEFA” and the plane Y7 = 0. It is possible to construct an infinite chain of spheres
inside a spherical fragment where the centers of all sphere of the chain lie on a horizontal plane,
parallel to the X;Y7 plane or may be X;Y; plane and each sphere tangent to the plane Y3 =0
and spherical fragment, that contains F'/EB and to its two immediate neighbors.

Let 2(a; + b1) be the diameter of the sphere and 2b; be the length of the segment I'FE.
Here we have set up a Cartesian coordinate system with origin at I and let us consider sphere
with center (x},y}, k1) which lie on a horizontal plane, parallel to the z'y! plane or may be
x'y! plane, it depends upon the value of k; and radius r§ tangent to the plane Y3 = 0 and the
spherical fragment, that containing FEB. Now, we construct a infinite chain of tangent spheres,
with centers (x},y}, k1) which lie on a horizontal plane, parallel to the X;Y; plane or may be
X1Y; plane, it depends upon the value of k; and radii r} for integer value of i, positive and
negative and k; is fixed but the values of k; may be positive, negative or zero. That means for
particular values of k1, we get a sequence of horizontal planes parallel to X;Y; plane. Therefore

1Received June 23, 2016, Accepted November 28, 2016.
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spherical chain for which the center of the spheres of the spherical chains lies on that plane.

if we consider any horizontal parallel plane corresponding to the X;Y7 plane then there exist a
Z

H
Y,

Figure 1. Spherical Chains inside a spherical segment

In this paper, we have learnt that the locus of the centers of the spherical chain mentioned

above is a certain type of curve. Here, we have exhibited that locus of the point of centers
of the spheres of the chain lie on a sphere. We have also inferred recursive and non recursive

formulae to find coordinates of centers and radii of the spheres of a spherical chain.

82. Some Geometric Properties of the Spherical Chain

Here we have speculated some basic properties of the infinite chain of spheres as mentioned

above.

/
Figure 2.1 Centers of the spheres in chain on a parabola
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Proposition 2.1 The centers of the spheres of the spherical chain on a horizontal plane, lie
on a parabola with axis parallel to Yi-axis, focus is at a height kv from L and the vertex is at
(0,61 — %, k1). If we draw Figure 2.1 explicitly, then

T

z

X,Z, plane or Y, = 0 plane
Xi

Figure 2.2 Centers of the spheres in chain on a parabola

Proof Let us consider a sphere of the chain with center I1(z',y!, k1), lie on a horizontal
plane which is parallel to the coordinate plane XY7, diameter GH, radius r', tangent to the
spherical arc FEB at S. Since LS contains I; (see Figure 2.2), we have by taking into account
that L, where L is the center of the sphere which contains the spherical chains, has coordinate
(0,61 —aq1,0) and

LS =ay + by,

LIy = /(z")2 + (y* — b1 + a1)? + (k1)?,
115: GIl = T‘l = yl.

Now, it is clear that
Ll =LS—-1L6S.

From these, we have

V(@2 + (Yt — b1+ a1)? + (k)% = a1 + by — o',

which simplifies into
k2
() = —4a1{y1 . —1>}. 0

4@1

This clearly represents a parabola which is symmetric with respect to the axis parallel to Yi-
2 2
axis with vertex (O, bt — %, kl) and focus (O, bl — qq — G0 ,kl), where L is the center of

4(11

the sphere. O

Proposition 2.2 The points of tangency between consecutive spheres of the chain lie on a
sphere.
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Proof Consider two neighboring spheres with centers (x},y}, k1), (x4, v}, k1), radii r},

rl 1 respectively, tangent to each other at U;, see Figure 3.

Figure 3. Points of tangency on a spherical arc

By using Proposition 2.1 and noting that A has coordinate (0, —2a1,0), we have

AL = (@l (o 200 )7 = b+ { = G = B g2

1\2 232
12 12 _(93) _k1
(ri)° = (v;) —{ 10, + b1 _4a1}'

Applying the Pythagorean theorem to the right triangle AIL;U;, we have
AU? = AI? — (r})? = 4ay(a; + b)) = AI.AE = AF?.

Thus it follows that U; lie on the sphere with center at A and radius AF. O

Figure 4. Line joining points of tangency
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Proposition 2.3 If a sphere of the chain touches the plane Y1 = 0 at G and touches the
spherical fragment FEB at S, then the points A (end point of the diameter opposite to plane
Y1 =0), G, S are collinear.

Proof Suppose a sphere has center I; of a spherical chain which touches the plane Y; = 0
at G and the spherical fragment FEB at S, see Figure 4. Note that triangles LAS and I1GS are
isosceles triangles where /LSA = /LAS = Z[1SG = ZI[,GS. Thus A, G, S must be collinear
as the triangles LAS and [;GS are similar.

83. Recursive and Non-Recursive Formulae to Find Coordinates of Centers and
Radii of the Spheres of a Spherical Chain

From Figure 5, the triangle I;1; 1 A; is right angle triangle (as I; A; is perpendicular drawn on

ri_,) with the centers I;_; and I; of two neighboring spheres of the chain.

Figure 5. Construction for determination of recursive formula

Since these spheres have radii r} | = y! | and r} = y! respectively, we have

(2 =@ 0)* + (g —yia)? + (b = k)® = (rf +70)? = (yi i),

(le - lefl)2 = 4%‘1%171'

Using (1), we can write

I L L e Tl

4@1 4@1

or

2
4a1{a1+b1—k%/4a1}—(x1171)2 ( 1)2 . 1+{a1 +b1—k%/4a1}x?71—4a1{b1—k%/4a1} 0 (2)
ATy)T T Al T =0.

4a% ay

If we index the spheres in the chain in such a way that the coordinate z} increases with
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the index i, then from (2) we have

1

1 2a;_y — {(%‘71)2/@1 —4(b1 — k%/4a1)} \/ L+ wl%i/éml)
.I'i =

{1+ i) EL Y ' ®)

ay 411?

This is a recursive formula that can be applied provided that z§ of the first circle is known.

Note that #} must be chosen in the interval { —2+/a1(by — k% /4aq),2+/a1(by — k%/4a1)}. Now
the 2! coordinate is k; and y} are radii derived from (1), by

k2 212
y}:"’}:bl——l—( )'L

. 4
4a1 4a1 ( )

Now, it is possible to transform the recursion formula into a continued fraction and after
some calculations, we get

o 2a1{\/1 + (b _512/4(11) — o ! } (5)

zl, / (b1 —k2/4ay)
2a11 4 14+ 1 — 1

Let

b—k24 1 b_k24
922\/1"’(171/0/1), and é_i:fEZ —\/1—}—@
ax a

then, we have

1
b= .
P+ &1
Thus, for positive integral values of 7,
1
é—i - — 1
© o— .?.1
BCRETT

Here we have used £y in place of &, and

R e

- 2a1 aq
Now, if we solve equation (2) for z}_; then we get

o2t a4 — B /an) fy1 4 e

ai

Y EECE T ' @
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Thus, for negative integral values of i, with

1 _ .2
e, \/1 o (b= k/4a)

o 2&1

ay
we have .
g—i = - — 1 ;
| S ——— .?.1
T =+t
where
xk by — k?/4a
oo = 01 M
20,1 a1

Therefore it is possible to give nonrecursive formulae for calculating z} and z!,. In the
1

following, here we shall consider only z} for positive integer indices because, as far as z', is
concerned, it is enough to change, in all the formulae involved, p into —gp, z} into z} ;. Starting

from (5), and by considering its particular structure, one can write, for i = 1,2, 3, ...

,Ui—l(@)

G=- 1i(p)

)

where p;(p) are polynomials with integer coefficients. Here are the first five of them.

to(9) 1

p1(p) o + ot

f12() (9° — 1) + post

113(p) (9° = 2p) + (p? — 1éort
p14(p) (p* = 39" + 1) + (p° — 20)€0+
ps(p) | (9° —49° +3p) + (p* — 3p° + 1)éo+

According to a fundamental property of continued fraction [1], these polynomials satisfy

the second order linear recurrence

i) = ppi-1(p) — pi—2(p). (8)

We can further write
1i(p) = pi(p) + @i—1(p)€o+ (9)

for a sequence of simpler polynomials ¢, (), each either odd or even. In fact, from (8) and (9),

we have

viv2(p) = ppir1(p) — vi(p)-
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Explicitly,

1, 1=0
1 1 % +n

2727,:0(_1)§+n p2n, 1= 254765

vi(p) = 2n
41 : =l
S (-2 Pl i=1,3,5,
2n—1

From (6), we have

fori=1,2,...

Note 3.1 One can also consider the planes parallel to Y Z! plane and Z' X! plane.
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Abstract: A labeling or numbering of a graph G is an assignment of labels to the vertices
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any two vertices of path P,. We also discuss neighborhood prime labeling in some graph

operations on the cycle C),.
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81. Introduction

All graphs in this paper are finite, simple, undirected and having no isolated vertices. For
all terminology and notations in graph theory, we follow [2] and for all terminology regarding
graceful labeling,we follow [3]. The field of graph theory plays vital role in various fields.Graph
labeling is one of the important area in graph theory. Graph labelings where the vertices are as-
signed values subject to certain conditions have been motivated by practical problems.Labeled
graphs serves as useful mathematical models for a broad range of applications such as com-
munication network addressing system,data base management, circuit designs, coding theory,
X-ray crystallography, the design of good radar type codes, synch-set codes,missile guidance
codes and radio astronomy problems etc. The detailed description of the applications of graph
labelings can be seen in [1].

Definition 1.1 Let G = (V(G),E(G)) be a graph with p vertices. A bijection f: V(G) —
{1,2,3,--- ,p} is called prime labeling if for each edge e = uv, ged(f(u), f(v)) = 1. A graph

which admits prime labeling is called a prime graph.

The notion of prime labeling was introduced by Roger Entringer and was discussed in a
paper by [4]. In [5] the author proved that the path P, on n vertices is a prime graph. In [6]
the author proved that the graph obtained by identifying any two vertices of path P, is a prime
graph. The prime labeling of some cycle related graphs were discussed in [7]. In [9] it is shown
that Cp, X Py; C,UK1 i, CoU Py, K1 U Py, Olive trees, P, ® K1,n > 2, PL|JP.U---U P, have
a prime labeling.

1Received January 14, 2016, Accepted November 28, 2016.
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§2. Neighborhood Prime Labeling

Definition 2.1 ([8]) Let G = (V(G), E(G)) be a graph with p vertices. A bijection [ : V(G) —
{1,2,3,---,p} is called neighborhood prime labeling if for each vertez v € V(G) with deg(v) > 1,
ged{f(u) : w € N(v)} = 1. A graph which admits neighborhood prime labeling is called a
neighborhood prime graph.

For a vertex v € V(G), the neighborhood of v is the set of all vertices in G which are
adjacent to v and is denoted by N(v). If in a graph G, every vertex is of degree at most 1,
then such a graph is neighborhood prime. S.K.Pater,N.P.Shrimali [8] proved that the path P,
is neighborhood prime graph for every n. They also proved that the cycle C,, is neighborhood
prime if n 2 2(mod4).We consider some results on neighborhood prime labeling of path P, and
cycle C,,.

Definition 2.2 Let u and v be two distinct vertices of a graph G. A new graph G, , is con-
structed by identifying (fusing) two vertices u and v by a single new vertex x such that every

edge which was incident with either w or v in G is now incident with x in Gy .

Definition 2.3 A wvertex switching G, of a graph G is obtained by taking a vertex v of
G,removing all the edges incident with v and adding edges joining v to every vertex which

are not adjacent to G.

Definition 2.4 Let G1,Ga, - ,Gp,n > 2 be n copies of a fized graph G. The graph obtained
by adding an edge between G; and G411 fori=1,2,--- ,n—1 is called the path union of G.

Theorem 2.1 The graph obtained by identifying any two vertices of P, is a neighborhood prime
graph if n 2 3(mod4).

Proof Let vy,vs, -+ ,v, be the vertices of P,. Let u be the new vertex of the graph
G obtained by identifying two distinct vertices v; and ve of P,. Then G is a loop with a
path in n-1 vertices.Since the path P, is neighborhood prime for every n, G is neighborhood
prime. Let u be the new vertex of G obtained by identifying two distinct vertices v, and vy
of P,. Then G is a cycle (possibly loop) with at most two paths attached at u. The graph
G is the disjoint union of cycle C], and the path P .Consider the consecutive vertices of CJ,
are u = uj,us, - ,u, and the consecutive vertices of P! are vy = u,v1,v2, -+ ,vs. Define a

function f: V(G) — {1,2,3,--- ,n— 1} as follows.

Case 1. If r and s are both even, define

-1
f(u2i71)—n2 +Z;1§i§gv f(UZi):ZJSZng
n+r—1 S r . s
f(v2j—1) 5 ]alSJSEa f(v2j):§+Ja1§]§§
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Case 2. If r is even but s is odd, define

-2
Fluzia) = 5= +i1<i< 5, fluz) =i, 1 <i <5,
n—+r . . _s+1 r .o s—1
flvgj—1) = tihlsis ——, f(v2j)=§+371§3§ 5
Case 3. If r is odd but s is even, define
-2 1 -1
f(u2i71):n +i71§i§%, f(uQi):i,1§i§T2 )
n+r—1 . .S r—1 R
flogj1) = ——5—+7,1<j< 5, flve)= +4,1<j< 5.
2 2 2 2
Case 4. If r and s are both odd, define
1 1
) =" +it<i< o, flw)=i1<is?
r— . s+ n+ . —
flvgj—1) = +5,1<j < ——, fluy)= +5,1<j < ——

Clearly, f is an injective map. We claim f is neighborhood prime labeling due to the

following;:
(1) If v; is a vertex of P,; and 1 < j < s—1, the proof is divided into cases following:

Case 1. If r and s are both even, the neighborhood vertices of each vertex v; are either
("_21'” + 7, "_21+T +j+1)or (547, 5+ j+1). These are consecutive integers. So the ged of

the neighborhood vertices of v; is 1.

Case 2. If r is even but s is odd, the neighborhood vertices of each vertex v; are either

(ME+ 4,2 +j+1)or (54 J,5+j+1). These are consecutive integers. So the ged of the

neighborhood vertices of v; is 1.

Case 3. If r is odd but s is even, the neighborhood vertices of each vertex v; are either
("*21” + 7, "*21” +j+1)or (% + 7, % +j+1). These are consecutive integers. So the ged
of the neighborhood vertices of v; is 1.

Case 4. If r and s are both odd the neighborhood vertices of each vertex v; are either

(";” + 4, ”;” +j7+1)or (Tgl + 4, T—gl + 7+ 1). These are consecutive integers. So the ged of

the neighborhood vertices of v; is 1.

(2) If w; is a vertex of C;N 2 < i <r, the proof is divided into cases following:

Case 1. If r and s are both even, the neighborhood vertices of each vertex u; are either
(%5 +4, %L +i+1) or (i,i+1). These are consecutive integers. So the ged of the neighborhood

vertices of u; is 1.

Case 2. If r is even but s is odd, the neighborhood vertices of each vertex wu; are either
("T_2 +1, "T_2 +i+1) or (i,i+1). These are consecutive integers. So the ged of the neighborhood

vertices of u; is 1.
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Case 3. If r is odd but s is even, the neighborhood vertices of each vertex u; are either
(%5244, %2 +i+1) or (i,i+1). These are consecutive integers. So the ged of the neighborhood
vertices of u; is 1.

Case 4. If r and s are both odd, the neighborhood vertices of each vertex w, are either
("T_l +1, "T_l +i+1) or (i,i+1). These are consecutive integers. So the ged of the neighborhood

vertices of u; is 1.
(3) For the vertex u = u; in C,,, the labeling of one of the neighborhood vertex is one. So
the ged is one.

Finally if we identifying the vertices v; and v,, of the path P,,, then the graph G is a cycle
with n — 1 vertices. The cycle C,, is neighborhood prime for n % 2(mod4), G is neighborhood
prime if n 2 3(mod4). O

83. Neighborhood Prime Labeling on Cycle Related Graphs

In this section we consider neighborhood prime labeling on cycle with chords,cycle with switch-
ing a vertex,path union of cycles and join of two cycles with a path. In [10] Mathew Varkey
T.K and Sunoj B.S proved that, every cycle C,, with a chord is prime for n > 4 and every cycle
C,, with [252] — 1 chords from a vertex is prime for n > 5. We have the following theorems.

Theorem 3.1 Every cycle C,, with a chord is neighborhood prime for all n > 4.

Proof Let G be a graph such that G = (), with a chord joining two non-adjacent vertices
of Cy,for all n > 4. Let {vy,va, - ,v,} be the vertex set of G. Let the number of vertices of
G be n and number of edges of G be n + 1.

(1) If n 2 2(mod4), define a function f: V(G) — {1,2,---,n} as follows:
Case 1. If nis odd, let

1 -1
nt andf(v2j)=j,1§j§n2

n—1 .
flvzj—1) = T""]JSJ <
Case 2. If n is even, let

flvgj—1) =

|3

+J,1§J§§andf(vzj)=y,1§3§

|3

The neighborhood vertices of each vertex v; except vy, is {v;—1,v;41} and they are consec-
utive integers, so it is neighborhood prime. The neighborhood vertices of v, is {v,—1,v1} and
the corresponding labels are consecutive integers "T_l and "T“ if nis odd, n and 5 + 1 if n is
even.Now select the vertex v; and join this to any vertex of G which is not adjacent to v;. Then
it is clear that the ged of labeling of the neighborhood vertices of each vertex is one and G is

neighborhood prime graph.

(2) If n = 2(mod4), the labeling of the same function shows that there exists at least one

vertex whose neighborhood set is not prime.Let v; be the vertex whose neighborhood set is not
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prime. We choose the vertex v; which is not adjacent and relatively prime to v; in G and join

with a chord. Then G is a neighborhood prime graph. O

Theorem 3.2 FEvery cycle C,, with n—3 chords from a vertex is neighborhood prime forn > 5.

Proof Let G be a graph such that G = C,,,n > 5. Let {v1,va, - ,v,} be the vertex set
of G.Choose an arbitrary vertex v; and joining v; to all the vertices which are not adjacent to
v;. Then there are n-3 chords to v; and from the above theorem G admits neighborhood prime
labeling. O

Theorem 3.3 The graph obtained by switching of any vertex in a cycle C,, is neighborhood
prime graph.

Proof Let G = C,, and vy,v2,- - ,v, be the successive vertices of C,,.Let G, denotes the
vertex switching of G with respect to the vertex vg. Here |V(G,, )| =n and |E(G,, )| = 2n—5.
Define a labeling f: V(G) — {1,2,3,--- ,n} as follows:

flo) =1,
fogsi) = fog—1) + 4,1 <i<n-—k.
Then for any vertex v; other than v, the neighborhood vertices containing vy and so the ged

of the label of vertices in N(v;) is 1. G,,, is a neighborhood prime graph. |

Theorem 3.4 Let G be the graph obtained by the path union of finite number of copies of cycle
Cp. G is a neighborhood prime graph if n 2 2(mod4).

Proof Let G be the path union of cycle C,, and G1,Gso,---,Gi be k copies of cycle
Cy. The vertices of G is nk and edges of G is (n + 1)k. Let us denote the vertices of G be
vi5,1 < i< n,1 <, 7 <k and the successive vertices of the graph G, by vi,, Vo, -+, Unr. Let
e = v1,V1(r41) be the edge joining G, and G(,4q) for r=1,2,---  k — 1.

Define the labeling f : V(G) — {1,2,--- ,nk} as follows:

Case 1. If nis odd and 1 < j <k, define

n+1

.. o n+1 . ) . on—1
f(v(2i—1)j):n]+l_771§1§ aﬂdf(”(2i)j):”(J—1)+%1SZST-

Case 2. If niseven and 1 < j <k, define

f(v@iz1);) :”j‘i‘i—z,l <1<

5 _5Emdf(v(zi)j):”(J—1)+%1SZS

S

We claim that f is a neighborhood prime labeling. If v;. is any vertex of G in the rth
copy of the cycle C,, different from vy,., then N(vir) = {v(i—1)p; V(it1)r}. Since f(v(i—1),) and
J(v(i41)r) are consecutive integers, ged of the labels of the vertices in N (vy.) is 1.

Notice that N(v11) = {vn1;v921} and f(v21) = 1, the ged of the labels of vertices in N (v17)
is 1. Now we consider vertices vy, 1 < r < k.



166 Mathew Varkey T.K and Rajesh Kumar T.J

Case 1. If nis odd, the labels of vertices in N (vi,) are n(r—32)+ 2, n(r+4)+% n(r—1)+1

and nr. They are relatively prime.
Case 2. If n is even, the labels of vertices in N (vi,) are n(r —2)+ 1, n(r+4)+ 3, n(r—1)+2
and n(r — %) They are relatively prime.

Finally we consider vyj.

Case 1. If n is odd, the labels of vertices in N(vi;) are n(k — 2) + 1, n(k — 1) + 1 and nk.

They are relatively prime.

Case 2. If nis odd, the labels of vertices in N (viy) are n(k—3)+ 3, n(k—1)+1 and n(k— 3).
They are relatively prime.

The cycle C), is not neighborhood prime if n = 2(mod4). Thus G is not neighborhood
prime if n 2 2(mod4). Hence G is neighborhood prime if n 2 2(mod4). O

Theorem 3.5 The graph obtained by by joining two copies of cycle C, by a path Py is a
neighborhood prime graph if n 2 2(mod4).

Proof Let G be the graph obtained by joining two copies of cycle C,, by a path Py. The
vertices of G are 2n + k — 2 and edges of G are 2n + k — 1. Let vy, v9, -+ , v, be the vertices
of the first copy of cycle C,, and wy,ws, -+ ,w, be the vertices of the second copy of cycle C,,.
Let uy,us, -+ ,ug be the vertices of path P, with v; = uq and w; = .

Define the labeling f: V(G) — {1,2,3,---,2n + k — 2} as follows:

Case 1. If n is odd, let the labeling on C,, be

and

and 3
f(wzi—l)zg-i-i,lﬁiﬁg, flwa) =n+i1<i<

The labeling on Py, is defined by

Case 1. If k is odd, let

1 k
and f(ugit1)=2n+14,1<i< ——.

k—3 k—
f(uzi)=2n+T+i,1§i§ 5

Case 2. If k is even, let

-2 k—2
and f(UQ»L'Jrl) :27’L+Z,1 S’LS _—.

k—2 k
f(u2i):2n+T+i71§i§
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We claim that f is a neighborhood prime labeling. If v; is any vertex of G in the first

copy of the cycle C,, different from vy, then N(v;) = [v;—1,v;41]. Since f(v;—1) and f(v;41) are

consecutive integers, the ged of the label of the vertices is 1. Also N(v1) contains the vertex vy
and f(vz) = 1, the ged of the label of vertices in N(vq) is 1.

If w; is any vertex of G in the second copy of the cycle C,, different from wy, then N(w;) =

[wi—1,w;11]. Since f(w;—1) and f(w;11) are consecutive integers, the ged of the label of the

vertices is 1.

Now, consider w;.

Case 1. If n is odd, N(w;) are {wa, wy,,ur—1}. They are relatively prime for n > 1 since
flwa) =n+1, f(w,) = 2n.

Case 2. If n is even, N(wy) are {wa, w,,ur—1}. They are relatively prime for n > 2 since
f(U2) :n—i—l,f(vn) = 3771

{’U,i_

Finally, if u; is any vertex of G in the path Py different from wu; and ug,then N(u;) =

1,Ui41 . Since f(u;—1) and f(u;41) are consecutive integers, the ged of the label of vertices

of N(u;) is 1. Thus, G is a neighborhood prime labeling graph if n 2 2(mod4). O
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We know nothing of what will happen in future, but by the analogy of past
eTperience.

By Abraham Lincoln, an American President.
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